| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpomatmul.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mpomatmul.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
mpomatmul.m |
⊢ × = ( .r ‘ 𝐴 ) |
| 4 |
|
mpomatmul.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
mpomatmul.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
| 6 |
|
mpomatmul.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 7 |
|
mpomatmul.x |
⊢ 𝑋 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝐶 ) |
| 8 |
|
mpomatmul.y |
⊢ 𝑌 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝐸 ) |
| 9 |
|
mpomatmul.c |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐶 ∈ 𝐵 ) |
| 10 |
|
mpomatmul.e |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐸 ∈ 𝐵 ) |
| 11 |
|
mpomatmul.d |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝑖 ∧ 𝑚 = 𝑗 ) ) → 𝐷 = 𝐶 ) |
| 12 |
|
mpomatmul.f |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑖 ∧ 𝑙 = 𝑗 ) ) → 𝐹 = 𝐸 ) |
| 13 |
|
mpomatmul.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑚 ∈ 𝑁 ) → 𝐷 ∈ 𝑈 ) |
| 14 |
|
mpomatmul.2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝐹 ∈ 𝑊 ) |
| 15 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
| 16 |
1 15
|
matmulr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 17 |
16 3
|
eqtr4di |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = × ) |
| 18 |
17
|
oveqd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) = ( 𝑋 × 𝑌 ) ) |
| 19 |
18
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑋 × 𝑌 ) = ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) ) |
| 20 |
6 5 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 23 |
9 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐶 ∈ ( Base ‘ 𝑅 ) ) |
| 24 |
1 21 22 6 5 23
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝐶 ) ∈ ( Base ‘ 𝐴 ) ) |
| 25 |
7 24
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 26 |
1 21
|
matbas2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 27 |
6 5 26
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 28 |
25 27
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 29 |
10 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐸 ∈ ( Base ‘ 𝑅 ) ) |
| 30 |
1 21 22 6 5 29
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝐸 ) ∈ ( Base ‘ 𝐴 ) ) |
| 31 |
8 30
|
eqeltrid |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐴 ) ) |
| 32 |
31 27
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 33 |
15 21 4 5 6 6 6 28 32
|
mamuval |
⊢ ( 𝜑 → ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑋 𝑚 ) · ( 𝑚 𝑌 𝑙 ) ) ) ) ) ) |
| 34 |
7
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑋 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝐶 ) ) |
| 35 |
|
equcom |
⊢ ( 𝑖 = 𝑘 ↔ 𝑘 = 𝑖 ) |
| 36 |
|
equcom |
⊢ ( 𝑗 = 𝑚 ↔ 𝑚 = 𝑗 ) |
| 37 |
35 36
|
anbi12i |
⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑚 ) ↔ ( 𝑘 = 𝑖 ∧ 𝑚 = 𝑗 ) ) |
| 38 |
37 11
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑚 ) ) → 𝐷 = 𝐶 ) |
| 39 |
38
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑚 ) ) → 𝐶 = 𝐷 ) |
| 40 |
39
|
ex |
⊢ ( 𝜑 → ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑚 ) → 𝐶 = 𝐷 ) ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑚 ) → 𝐶 = 𝐷 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑚 ) → 𝐶 = 𝐷 ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) ∧ ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑚 ) ) → 𝐶 = 𝐷 ) |
| 44 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑚 ∈ 𝑁 ) |
| 46 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝜑 ) |
| 47 |
46 44 45 13
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝐷 ∈ 𝑈 ) |
| 48 |
34 43 44 45 47
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( 𝑘 𝑋 𝑚 ) = 𝐷 ) |
| 49 |
8
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑌 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝐸 ) ) |
| 50 |
|
equcomi |
⊢ ( 𝑖 = 𝑚 → 𝑚 = 𝑖 ) |
| 51 |
|
equcomi |
⊢ ( 𝑗 = 𝑙 → 𝑙 = 𝑗 ) |
| 52 |
50 51
|
anim12i |
⊢ ( ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑙 ) → ( 𝑚 = 𝑖 ∧ 𝑙 = 𝑗 ) ) |
| 53 |
52 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑙 ) ) → 𝐹 = 𝐸 ) |
| 54 |
53
|
ex |
⊢ ( 𝜑 → ( ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑙 ) → 𝐹 = 𝐸 ) ) |
| 55 |
54
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑙 ) → 𝐹 = 𝐸 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑙 ) → 𝐹 = 𝐸 ) ) |
| 57 |
56
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) ∧ ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑙 ) ) → 𝐹 = 𝐸 ) |
| 58 |
57
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) ∧ ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑙 ) ) → 𝐸 = 𝐹 ) |
| 59 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑙 ∈ 𝑁 ) |
| 60 |
46 45 59 14
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝐹 ∈ 𝑊 ) |
| 61 |
49 58 45 59 60
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( 𝑚 𝑌 𝑙 ) = 𝐹 ) |
| 62 |
48 61
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( ( 𝑘 𝑋 𝑚 ) · ( 𝑚 𝑌 𝑙 ) ) = ( 𝐷 · 𝐹 ) ) |
| 63 |
62
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑋 𝑚 ) · ( 𝑚 𝑌 𝑙 ) ) ) = ( 𝑚 ∈ 𝑁 ↦ ( 𝐷 · 𝐹 ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑋 𝑚 ) · ( 𝑚 𝑌 𝑙 ) ) ) ) = ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( 𝐷 · 𝐹 ) ) ) ) |
| 65 |
64
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑋 𝑚 ) · ( 𝑚 𝑌 𝑙 ) ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( 𝐷 · 𝐹 ) ) ) ) ) |
| 66 |
20 33 65
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( 𝐷 · 𝐹 ) ) ) ) ) |