Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( A e. V /\ B e. On ) /\ F e. ( B ^m A ) ) -> A e. V ) |
2 |
|
onss |
|- ( B e. On -> B C_ On ) |
3 |
|
sstr |
|- ( ( ran F C_ B /\ B C_ On ) -> ran F C_ On ) |
4 |
3
|
expcom |
|- ( B C_ On -> ( ran F C_ B -> ran F C_ On ) ) |
5 |
2 4
|
syl |
|- ( B e. On -> ( ran F C_ B -> ran F C_ On ) ) |
6 |
5
|
anim2d |
|- ( B e. On -> ( ( F Fn A /\ ran F C_ B ) -> ( F Fn A /\ ran F C_ On ) ) ) |
7 |
|
df-f |
|- ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) |
8 |
|
df-f |
|- ( F : A --> On <-> ( F Fn A /\ ran F C_ On ) ) |
9 |
6 7 8
|
3imtr4g |
|- ( B e. On -> ( F : A --> B -> F : A --> On ) ) |
10 |
|
elmapi |
|- ( F e. ( B ^m A ) -> F : A --> B ) |
11 |
9 10
|
impel |
|- ( ( B e. On /\ F e. ( B ^m A ) ) -> F : A --> On ) |
12 |
11
|
adantll |
|- ( ( ( A e. V /\ B e. On ) /\ F e. ( B ^m A ) ) -> F : A --> On ) |
13 |
|
peano1 |
|- (/) e. _om |
14 |
|
fnconstg |
|- ( (/) e. _om -> ( A X. { (/) } ) Fn A ) |
15 |
13 14
|
mp1i |
|- ( ( ( A e. V /\ B e. On ) /\ F e. ( B ^m A ) ) -> ( A X. { (/) } ) Fn A ) |
16 |
|
simp3 |
|- ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> ( A X. { (/) } ) Fn A ) |
17 |
|
simp2 |
|- ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> F : A --> On ) |
18 |
17
|
ffnd |
|- ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> F Fn A ) |
19 |
|
simp1 |
|- ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> A e. V ) |
20 |
|
inidm |
|- ( A i^i A ) = A |
21 |
16 18 19 19 20
|
offn |
|- ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> ( ( A X. { (/) } ) oF +o F ) Fn A ) |
22 |
16 18
|
jca |
|- ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> ( ( A X. { (/) } ) Fn A /\ F Fn A ) ) |
23 |
22
|
adantr |
|- ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( A X. { (/) } ) Fn A /\ F Fn A ) ) |
24 |
19
|
adantr |
|- ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> A e. V ) |
25 |
|
simpr |
|- ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> a e. A ) |
26 |
|
fnfvof |
|- ( ( ( ( A X. { (/) } ) Fn A /\ F Fn A ) /\ ( A e. V /\ a e. A ) ) -> ( ( ( A X. { (/) } ) oF +o F ) ` a ) = ( ( ( A X. { (/) } ) ` a ) +o ( F ` a ) ) ) |
27 |
23 24 25 26
|
syl12anc |
|- ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( ( A X. { (/) } ) oF +o F ) ` a ) = ( ( ( A X. { (/) } ) ` a ) +o ( F ` a ) ) ) |
28 |
|
fvconst2g |
|- ( ( (/) e. _om /\ a e. A ) -> ( ( A X. { (/) } ) ` a ) = (/) ) |
29 |
13 25 28
|
sylancr |
|- ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( A X. { (/) } ) ` a ) = (/) ) |
30 |
29
|
oveq1d |
|- ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( ( A X. { (/) } ) ` a ) +o ( F ` a ) ) = ( (/) +o ( F ` a ) ) ) |
31 |
17
|
ffvelcdmda |
|- ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( F ` a ) e. On ) |
32 |
|
oa0r |
|- ( ( F ` a ) e. On -> ( (/) +o ( F ` a ) ) = ( F ` a ) ) |
33 |
31 32
|
syl |
|- ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( (/) +o ( F ` a ) ) = ( F ` a ) ) |
34 |
27 30 33
|
3eqtrd |
|- ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( ( A X. { (/) } ) oF +o F ) ` a ) = ( F ` a ) ) |
35 |
21 18 34
|
eqfnfvd |
|- ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> ( ( A X. { (/) } ) oF +o F ) = F ) |
36 |
1 12 15 35
|
syl3anc |
|- ( ( ( A e. V /\ B e. On ) /\ F e. ( B ^m A ) ) -> ( ( A X. { (/) } ) oF +o F ) = F ) |