| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  |-  ( ( ( A e. V /\ B e. On ) /\ F e. ( B ^m A ) ) -> A e. V ) | 
						
							| 2 |  | onss |  |-  ( B e. On -> B C_ On ) | 
						
							| 3 |  | sstr |  |-  ( ( ran F C_ B /\ B C_ On ) -> ran F C_ On ) | 
						
							| 4 | 3 | expcom |  |-  ( B C_ On -> ( ran F C_ B -> ran F C_ On ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( B e. On -> ( ran F C_ B -> ran F C_ On ) ) | 
						
							| 6 | 5 | anim2d |  |-  ( B e. On -> ( ( F Fn A /\ ran F C_ B ) -> ( F Fn A /\ ran F C_ On ) ) ) | 
						
							| 7 |  | df-f |  |-  ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) | 
						
							| 8 |  | df-f |  |-  ( F : A --> On <-> ( F Fn A /\ ran F C_ On ) ) | 
						
							| 9 | 6 7 8 | 3imtr4g |  |-  ( B e. On -> ( F : A --> B -> F : A --> On ) ) | 
						
							| 10 |  | elmapi |  |-  ( F e. ( B ^m A ) -> F : A --> B ) | 
						
							| 11 | 9 10 | impel |  |-  ( ( B e. On /\ F e. ( B ^m A ) ) -> F : A --> On ) | 
						
							| 12 | 11 | adantll |  |-  ( ( ( A e. V /\ B e. On ) /\ F e. ( B ^m A ) ) -> F : A --> On ) | 
						
							| 13 |  | peano1 |  |-  (/) e. _om | 
						
							| 14 |  | fnconstg |  |-  ( (/) e. _om -> ( A X. { (/) } ) Fn A ) | 
						
							| 15 | 13 14 | mp1i |  |-  ( ( ( A e. V /\ B e. On ) /\ F e. ( B ^m A ) ) -> ( A X. { (/) } ) Fn A ) | 
						
							| 16 |  | simp3 |  |-  ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> ( A X. { (/) } ) Fn A ) | 
						
							| 17 |  | simp2 |  |-  ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> F : A --> On ) | 
						
							| 18 | 17 | ffnd |  |-  ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> F Fn A ) | 
						
							| 19 |  | simp1 |  |-  ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> A e. V ) | 
						
							| 20 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 21 | 16 18 19 19 20 | offn |  |-  ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> ( ( A X. { (/) } ) oF +o F ) Fn A ) | 
						
							| 22 | 16 18 | jca |  |-  ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> ( ( A X. { (/) } ) Fn A /\ F Fn A ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( A X. { (/) } ) Fn A /\ F Fn A ) ) | 
						
							| 24 | 19 | adantr |  |-  ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> A e. V ) | 
						
							| 25 |  | simpr |  |-  ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> a e. A ) | 
						
							| 26 |  | fnfvof |  |-  ( ( ( ( A X. { (/) } ) Fn A /\ F Fn A ) /\ ( A e. V /\ a e. A ) ) -> ( ( ( A X. { (/) } ) oF +o F ) ` a ) = ( ( ( A X. { (/) } ) ` a ) +o ( F ` a ) ) ) | 
						
							| 27 | 23 24 25 26 | syl12anc |  |-  ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( ( A X. { (/) } ) oF +o F ) ` a ) = ( ( ( A X. { (/) } ) ` a ) +o ( F ` a ) ) ) | 
						
							| 28 |  | fvconst2g |  |-  ( ( (/) e. _om /\ a e. A ) -> ( ( A X. { (/) } ) ` a ) = (/) ) | 
						
							| 29 | 13 25 28 | sylancr |  |-  ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( A X. { (/) } ) ` a ) = (/) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( ( A X. { (/) } ) ` a ) +o ( F ` a ) ) = ( (/) +o ( F ` a ) ) ) | 
						
							| 31 | 17 | ffvelcdmda |  |-  ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( F ` a ) e. On ) | 
						
							| 32 |  | oa0r |  |-  ( ( F ` a ) e. On -> ( (/) +o ( F ` a ) ) = ( F ` a ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( (/) +o ( F ` a ) ) = ( F ` a ) ) | 
						
							| 34 | 27 30 33 | 3eqtrd |  |-  ( ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) /\ a e. A ) -> ( ( ( A X. { (/) } ) oF +o F ) ` a ) = ( F ` a ) ) | 
						
							| 35 | 21 18 34 | eqfnfvd |  |-  ( ( A e. V /\ F : A --> On /\ ( A X. { (/) } ) Fn A ) -> ( ( A X. { (/) } ) oF +o F ) = F ) | 
						
							| 36 | 1 12 15 35 | syl3anc |  |-  ( ( ( A e. V /\ B e. On ) /\ F e. ( B ^m A ) ) -> ( ( A X. { (/) } ) oF +o F ) = F ) |