| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pl1cn.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pl1cn.e |  |-  E = ( eval1 ` R ) | 
						
							| 3 |  | pl1cn.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | pl1cn.k |  |-  K = ( Base ` R ) | 
						
							| 5 |  | pl1cn.j |  |-  J = ( TopOpen ` R ) | 
						
							| 6 |  | pl1cn.1 |  |-  ( ph -> R e. CRing ) | 
						
							| 7 |  | pl1cn.2 |  |-  ( ph -> R e. TopRing ) | 
						
							| 8 |  | pl1cn.3 |  |-  ( ph -> F e. B ) | 
						
							| 9 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 10 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 11 |  | eqid |  |-  ran ( eval1 ` R ) = ran ( eval1 ` R ) | 
						
							| 12 | 4 | fvexi |  |-  K e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> K e. _V ) | 
						
							| 14 |  | fvexd |  |-  ( ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) /\ x e. K ) -> ( f ` x ) e. _V ) | 
						
							| 15 |  | fvexd |  |-  ( ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) /\ x e. K ) -> ( g ` x ) e. _V ) | 
						
							| 16 |  | simp1 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ph ) | 
						
							| 17 |  | eqid |  |-  U. J = U. J | 
						
							| 18 | 17 17 | cnf |  |-  ( f e. ( J Cn J ) -> f : U. J --> U. J ) | 
						
							| 19 | 18 | ffnd |  |-  ( f e. ( J Cn J ) -> f Fn U. J ) | 
						
							| 20 | 19 | 3ad2ant2 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> f Fn U. J ) | 
						
							| 21 |  | trgtgp |  |-  ( R e. TopRing -> R e. TopGrp ) | 
						
							| 22 | 5 4 | tgptopon |  |-  ( R e. TopGrp -> J e. ( TopOn ` K ) ) | 
						
							| 23 | 7 21 22 | 3syl |  |-  ( ph -> J e. ( TopOn ` K ) ) | 
						
							| 24 |  | toponuni |  |-  ( J e. ( TopOn ` K ) -> K = U. J ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> K = U. J ) | 
						
							| 26 | 25 | fneq2d |  |-  ( ph -> ( f Fn K <-> f Fn U. J ) ) | 
						
							| 27 |  | dffn5 |  |-  ( f Fn K <-> f = ( x e. K |-> ( f ` x ) ) ) | 
						
							| 28 | 26 27 | bitr3di |  |-  ( ph -> ( f Fn U. J <-> f = ( x e. K |-> ( f ` x ) ) ) ) | 
						
							| 29 | 28 | biimpa |  |-  ( ( ph /\ f Fn U. J ) -> f = ( x e. K |-> ( f ` x ) ) ) | 
						
							| 30 | 16 20 29 | syl2anc |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> f = ( x e. K |-> ( f ` x ) ) ) | 
						
							| 31 | 17 17 | cnf |  |-  ( g e. ( J Cn J ) -> g : U. J --> U. J ) | 
						
							| 32 | 31 | ffnd |  |-  ( g e. ( J Cn J ) -> g Fn U. J ) | 
						
							| 33 | 32 | 3ad2ant3 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> g Fn U. J ) | 
						
							| 34 | 25 | fneq2d |  |-  ( ph -> ( g Fn K <-> g Fn U. J ) ) | 
						
							| 35 |  | dffn5 |  |-  ( g Fn K <-> g = ( x e. K |-> ( g ` x ) ) ) | 
						
							| 36 | 34 35 | bitr3di |  |-  ( ph -> ( g Fn U. J <-> g = ( x e. K |-> ( g ` x ) ) ) ) | 
						
							| 37 | 36 | biimpa |  |-  ( ( ph /\ g Fn U. J ) -> g = ( x e. K |-> ( g ` x ) ) ) | 
						
							| 38 | 16 33 37 | syl2anc |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> g = ( x e. K |-> ( g ` x ) ) ) | 
						
							| 39 | 13 14 15 30 38 | offval2 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( f oF ( +g ` R ) g ) = ( x e. K |-> ( ( f ` x ) ( +g ` R ) ( g ` x ) ) ) ) | 
						
							| 40 | 23 | 3ad2ant1 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> J e. ( TopOn ` K ) ) | 
						
							| 41 |  | simp2 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> f e. ( J Cn J ) ) | 
						
							| 42 | 30 41 | eqeltrrd |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( x e. K |-> ( f ` x ) ) e. ( J Cn J ) ) | 
						
							| 43 |  | simp3 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> g e. ( J Cn J ) ) | 
						
							| 44 | 38 43 | eqeltrrd |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( x e. K |-> ( g ` x ) ) e. ( J Cn J ) ) | 
						
							| 45 |  | eqid |  |-  ( +f ` R ) = ( +f ` R ) | 
						
							| 46 | 4 9 45 | plusffval |  |-  ( +f ` R ) = ( y e. K , z e. K |-> ( y ( +g ` R ) z ) ) | 
						
							| 47 | 5 45 | tgpcn |  |-  ( R e. TopGrp -> ( +f ` R ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 48 | 7 21 47 | 3syl |  |-  ( ph -> ( +f ` R ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 49 | 46 48 | eqeltrrid |  |-  ( ph -> ( y e. K , z e. K |-> ( y ( +g ` R ) z ) ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 50 | 49 | 3ad2ant1 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( y e. K , z e. K |-> ( y ( +g ` R ) z ) ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 51 |  | oveq12 |  |-  ( ( y = ( f ` x ) /\ z = ( g ` x ) ) -> ( y ( +g ` R ) z ) = ( ( f ` x ) ( +g ` R ) ( g ` x ) ) ) | 
						
							| 52 | 40 42 44 40 40 50 51 | cnmpt12 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( x e. K |-> ( ( f ` x ) ( +g ` R ) ( g ` x ) ) ) e. ( J Cn J ) ) | 
						
							| 53 | 39 52 | eqeltrd |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) | 
						
							| 54 | 53 | 3adant2l |  |-  ( ( ph /\ ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ g e. ( J Cn J ) ) -> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) | 
						
							| 55 | 54 | 3adant3l |  |-  ( ( ph /\ ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ ( g e. ran ( eval1 ` R ) /\ g e. ( J Cn J ) ) ) -> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) | 
						
							| 56 | 55 | 3expb |  |-  ( ( ph /\ ( ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ ( g e. ran ( eval1 ` R ) /\ g e. ( J Cn J ) ) ) ) -> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) | 
						
							| 57 | 13 14 15 30 38 | offval2 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( f oF ( .r ` R ) g ) = ( x e. K |-> ( ( f ` x ) ( .r ` R ) ( g ` x ) ) ) ) | 
						
							| 58 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 59 | 58 4 | mgpbas |  |-  K = ( Base ` ( mulGrp ` R ) ) | 
						
							| 60 | 58 10 | mgpplusg |  |-  ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) | 
						
							| 61 |  | eqid |  |-  ( +f ` ( mulGrp ` R ) ) = ( +f ` ( mulGrp ` R ) ) | 
						
							| 62 | 59 60 61 | plusffval |  |-  ( +f ` ( mulGrp ` R ) ) = ( y e. K , z e. K |-> ( y ( .r ` R ) z ) ) | 
						
							| 63 | 5 61 | mulrcn |  |-  ( R e. TopRing -> ( +f ` ( mulGrp ` R ) ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 64 | 7 63 | syl |  |-  ( ph -> ( +f ` ( mulGrp ` R ) ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 65 | 62 64 | eqeltrrid |  |-  ( ph -> ( y e. K , z e. K |-> ( y ( .r ` R ) z ) ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 66 | 65 | 3ad2ant1 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( y e. K , z e. K |-> ( y ( .r ` R ) z ) ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 67 |  | oveq12 |  |-  ( ( y = ( f ` x ) /\ z = ( g ` x ) ) -> ( y ( .r ` R ) z ) = ( ( f ` x ) ( .r ` R ) ( g ` x ) ) ) | 
						
							| 68 | 40 42 44 40 40 66 67 | cnmpt12 |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( x e. K |-> ( ( f ` x ) ( .r ` R ) ( g ` x ) ) ) e. ( J Cn J ) ) | 
						
							| 69 | 57 68 | eqeltrd |  |-  ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) | 
						
							| 70 | 69 | 3adant2l |  |-  ( ( ph /\ ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ g e. ( J Cn J ) ) -> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) | 
						
							| 71 | 70 | 3adant3l |  |-  ( ( ph /\ ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ ( g e. ran ( eval1 ` R ) /\ g e. ( J Cn J ) ) ) -> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) | 
						
							| 72 | 71 | 3expb |  |-  ( ( ph /\ ( ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ ( g e. ran ( eval1 ` R ) /\ g e. ( J Cn J ) ) ) ) -> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) | 
						
							| 73 |  | eleq1 |  |-  ( h = ( K X. { f } ) -> ( h e. ( J Cn J ) <-> ( K X. { f } ) e. ( J Cn J ) ) ) | 
						
							| 74 |  | eleq1 |  |-  ( h = ( _I |` K ) -> ( h e. ( J Cn J ) <-> ( _I |` K ) e. ( J Cn J ) ) ) | 
						
							| 75 |  | eleq1 |  |-  ( h = f -> ( h e. ( J Cn J ) <-> f e. ( J Cn J ) ) ) | 
						
							| 76 |  | eleq1 |  |-  ( h = g -> ( h e. ( J Cn J ) <-> g e. ( J Cn J ) ) ) | 
						
							| 77 |  | eleq1 |  |-  ( h = ( f oF ( +g ` R ) g ) -> ( h e. ( J Cn J ) <-> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) ) | 
						
							| 78 |  | eleq1 |  |-  ( h = ( f oF ( .r ` R ) g ) -> ( h e. ( J Cn J ) <-> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) ) | 
						
							| 79 |  | eleq1 |  |-  ( h = ( E ` F ) -> ( h e. ( J Cn J ) <-> ( E ` F ) e. ( J Cn J ) ) ) | 
						
							| 80 | 23 | adantr |  |-  ( ( ph /\ f e. K ) -> J e. ( TopOn ` K ) ) | 
						
							| 81 |  | simpr |  |-  ( ( ph /\ f e. K ) -> f e. K ) | 
						
							| 82 |  | cnconst2 |  |-  ( ( J e. ( TopOn ` K ) /\ J e. ( TopOn ` K ) /\ f e. K ) -> ( K X. { f } ) e. ( J Cn J ) ) | 
						
							| 83 | 80 80 81 82 | syl3anc |  |-  ( ( ph /\ f e. K ) -> ( K X. { f } ) e. ( J Cn J ) ) | 
						
							| 84 |  | idcn |  |-  ( J e. ( TopOn ` K ) -> ( _I |` K ) e. ( J Cn J ) ) | 
						
							| 85 | 23 84 | syl |  |-  ( ph -> ( _I |` K ) e. ( J Cn J ) ) | 
						
							| 86 |  | eqid |  |-  ( R ^s K ) = ( R ^s K ) | 
						
							| 87 | 2 1 86 4 | evl1rhm |  |-  ( R e. CRing -> E e. ( P RingHom ( R ^s K ) ) ) | 
						
							| 88 |  | eqid |  |-  ( Base ` ( R ^s K ) ) = ( Base ` ( R ^s K ) ) | 
						
							| 89 | 3 88 | rhmf |  |-  ( E e. ( P RingHom ( R ^s K ) ) -> E : B --> ( Base ` ( R ^s K ) ) ) | 
						
							| 90 |  | ffn |  |-  ( E : B --> ( Base ` ( R ^s K ) ) -> E Fn B ) | 
						
							| 91 |  | dffn3 |  |-  ( E Fn B <-> E : B --> ran E ) | 
						
							| 92 | 91 | biimpi |  |-  ( E Fn B -> E : B --> ran E ) | 
						
							| 93 | 87 89 90 92 | 4syl |  |-  ( R e. CRing -> E : B --> ran E ) | 
						
							| 94 | 6 93 | syl |  |-  ( ph -> E : B --> ran E ) | 
						
							| 95 | 94 8 | ffvelcdmd |  |-  ( ph -> ( E ` F ) e. ran E ) | 
						
							| 96 | 2 | rneqi |  |-  ran E = ran ( eval1 ` R ) | 
						
							| 97 | 95 96 | eleqtrdi |  |-  ( ph -> ( E ` F ) e. ran ( eval1 ` R ) ) | 
						
							| 98 | 4 9 10 11 56 72 73 74 75 76 77 78 79 83 85 97 | pf1ind |  |-  ( ph -> ( E ` F ) e. ( J Cn J ) ) |