Step |
Hyp |
Ref |
Expression |
1 |
|
pl1cn.p |
|- P = ( Poly1 ` R ) |
2 |
|
pl1cn.e |
|- E = ( eval1 ` R ) |
3 |
|
pl1cn.b |
|- B = ( Base ` P ) |
4 |
|
pl1cn.k |
|- K = ( Base ` R ) |
5 |
|
pl1cn.j |
|- J = ( TopOpen ` R ) |
6 |
|
pl1cn.1 |
|- ( ph -> R e. CRing ) |
7 |
|
pl1cn.2 |
|- ( ph -> R e. TopRing ) |
8 |
|
pl1cn.3 |
|- ( ph -> F e. B ) |
9 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
11 |
|
eqid |
|- ran ( eval1 ` R ) = ran ( eval1 ` R ) |
12 |
4
|
fvexi |
|- K e. _V |
13 |
12
|
a1i |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> K e. _V ) |
14 |
|
fvexd |
|- ( ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) /\ x e. K ) -> ( f ` x ) e. _V ) |
15 |
|
fvexd |
|- ( ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) /\ x e. K ) -> ( g ` x ) e. _V ) |
16 |
|
simp1 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ph ) |
17 |
|
eqid |
|- U. J = U. J |
18 |
17 17
|
cnf |
|- ( f e. ( J Cn J ) -> f : U. J --> U. J ) |
19 |
18
|
ffnd |
|- ( f e. ( J Cn J ) -> f Fn U. J ) |
20 |
19
|
3ad2ant2 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> f Fn U. J ) |
21 |
|
trgtgp |
|- ( R e. TopRing -> R e. TopGrp ) |
22 |
5 4
|
tgptopon |
|- ( R e. TopGrp -> J e. ( TopOn ` K ) ) |
23 |
7 21 22
|
3syl |
|- ( ph -> J e. ( TopOn ` K ) ) |
24 |
|
toponuni |
|- ( J e. ( TopOn ` K ) -> K = U. J ) |
25 |
23 24
|
syl |
|- ( ph -> K = U. J ) |
26 |
25
|
fneq2d |
|- ( ph -> ( f Fn K <-> f Fn U. J ) ) |
27 |
|
dffn5 |
|- ( f Fn K <-> f = ( x e. K |-> ( f ` x ) ) ) |
28 |
26 27
|
bitr3di |
|- ( ph -> ( f Fn U. J <-> f = ( x e. K |-> ( f ` x ) ) ) ) |
29 |
28
|
biimpa |
|- ( ( ph /\ f Fn U. J ) -> f = ( x e. K |-> ( f ` x ) ) ) |
30 |
16 20 29
|
syl2anc |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> f = ( x e. K |-> ( f ` x ) ) ) |
31 |
17 17
|
cnf |
|- ( g e. ( J Cn J ) -> g : U. J --> U. J ) |
32 |
31
|
ffnd |
|- ( g e. ( J Cn J ) -> g Fn U. J ) |
33 |
32
|
3ad2ant3 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> g Fn U. J ) |
34 |
25
|
fneq2d |
|- ( ph -> ( g Fn K <-> g Fn U. J ) ) |
35 |
|
dffn5 |
|- ( g Fn K <-> g = ( x e. K |-> ( g ` x ) ) ) |
36 |
34 35
|
bitr3di |
|- ( ph -> ( g Fn U. J <-> g = ( x e. K |-> ( g ` x ) ) ) ) |
37 |
36
|
biimpa |
|- ( ( ph /\ g Fn U. J ) -> g = ( x e. K |-> ( g ` x ) ) ) |
38 |
16 33 37
|
syl2anc |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> g = ( x e. K |-> ( g ` x ) ) ) |
39 |
13 14 15 30 38
|
offval2 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( f oF ( +g ` R ) g ) = ( x e. K |-> ( ( f ` x ) ( +g ` R ) ( g ` x ) ) ) ) |
40 |
23
|
3ad2ant1 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> J e. ( TopOn ` K ) ) |
41 |
|
simp2 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> f e. ( J Cn J ) ) |
42 |
30 41
|
eqeltrrd |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( x e. K |-> ( f ` x ) ) e. ( J Cn J ) ) |
43 |
|
simp3 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> g e. ( J Cn J ) ) |
44 |
38 43
|
eqeltrrd |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( x e. K |-> ( g ` x ) ) e. ( J Cn J ) ) |
45 |
|
eqid |
|- ( +f ` R ) = ( +f ` R ) |
46 |
4 9 45
|
plusffval |
|- ( +f ` R ) = ( y e. K , z e. K |-> ( y ( +g ` R ) z ) ) |
47 |
5 45
|
tgpcn |
|- ( R e. TopGrp -> ( +f ` R ) e. ( ( J tX J ) Cn J ) ) |
48 |
7 21 47
|
3syl |
|- ( ph -> ( +f ` R ) e. ( ( J tX J ) Cn J ) ) |
49 |
46 48
|
eqeltrrid |
|- ( ph -> ( y e. K , z e. K |-> ( y ( +g ` R ) z ) ) e. ( ( J tX J ) Cn J ) ) |
50 |
49
|
3ad2ant1 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( y e. K , z e. K |-> ( y ( +g ` R ) z ) ) e. ( ( J tX J ) Cn J ) ) |
51 |
|
oveq12 |
|- ( ( y = ( f ` x ) /\ z = ( g ` x ) ) -> ( y ( +g ` R ) z ) = ( ( f ` x ) ( +g ` R ) ( g ` x ) ) ) |
52 |
40 42 44 40 40 50 51
|
cnmpt12 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( x e. K |-> ( ( f ` x ) ( +g ` R ) ( g ` x ) ) ) e. ( J Cn J ) ) |
53 |
39 52
|
eqeltrd |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) |
54 |
53
|
3adant2l |
|- ( ( ph /\ ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ g e. ( J Cn J ) ) -> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) |
55 |
54
|
3adant3l |
|- ( ( ph /\ ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ ( g e. ran ( eval1 ` R ) /\ g e. ( J Cn J ) ) ) -> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) |
56 |
55
|
3expb |
|- ( ( ph /\ ( ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ ( g e. ran ( eval1 ` R ) /\ g e. ( J Cn J ) ) ) ) -> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) |
57 |
13 14 15 30 38
|
offval2 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( f oF ( .r ` R ) g ) = ( x e. K |-> ( ( f ` x ) ( .r ` R ) ( g ` x ) ) ) ) |
58 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
59 |
58 4
|
mgpbas |
|- K = ( Base ` ( mulGrp ` R ) ) |
60 |
58 10
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
61 |
|
eqid |
|- ( +f ` ( mulGrp ` R ) ) = ( +f ` ( mulGrp ` R ) ) |
62 |
59 60 61
|
plusffval |
|- ( +f ` ( mulGrp ` R ) ) = ( y e. K , z e. K |-> ( y ( .r ` R ) z ) ) |
63 |
5 61
|
mulrcn |
|- ( R e. TopRing -> ( +f ` ( mulGrp ` R ) ) e. ( ( J tX J ) Cn J ) ) |
64 |
7 63
|
syl |
|- ( ph -> ( +f ` ( mulGrp ` R ) ) e. ( ( J tX J ) Cn J ) ) |
65 |
62 64
|
eqeltrrid |
|- ( ph -> ( y e. K , z e. K |-> ( y ( .r ` R ) z ) ) e. ( ( J tX J ) Cn J ) ) |
66 |
65
|
3ad2ant1 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( y e. K , z e. K |-> ( y ( .r ` R ) z ) ) e. ( ( J tX J ) Cn J ) ) |
67 |
|
oveq12 |
|- ( ( y = ( f ` x ) /\ z = ( g ` x ) ) -> ( y ( .r ` R ) z ) = ( ( f ` x ) ( .r ` R ) ( g ` x ) ) ) |
68 |
40 42 44 40 40 66 67
|
cnmpt12 |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( x e. K |-> ( ( f ` x ) ( .r ` R ) ( g ` x ) ) ) e. ( J Cn J ) ) |
69 |
57 68
|
eqeltrd |
|- ( ( ph /\ f e. ( J Cn J ) /\ g e. ( J Cn J ) ) -> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) |
70 |
69
|
3adant2l |
|- ( ( ph /\ ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ g e. ( J Cn J ) ) -> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) |
71 |
70
|
3adant3l |
|- ( ( ph /\ ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ ( g e. ran ( eval1 ` R ) /\ g e. ( J Cn J ) ) ) -> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) |
72 |
71
|
3expb |
|- ( ( ph /\ ( ( f e. ran ( eval1 ` R ) /\ f e. ( J Cn J ) ) /\ ( g e. ran ( eval1 ` R ) /\ g e. ( J Cn J ) ) ) ) -> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) |
73 |
|
eleq1 |
|- ( h = ( K X. { f } ) -> ( h e. ( J Cn J ) <-> ( K X. { f } ) e. ( J Cn J ) ) ) |
74 |
|
eleq1 |
|- ( h = ( _I |` K ) -> ( h e. ( J Cn J ) <-> ( _I |` K ) e. ( J Cn J ) ) ) |
75 |
|
eleq1 |
|- ( h = f -> ( h e. ( J Cn J ) <-> f e. ( J Cn J ) ) ) |
76 |
|
eleq1 |
|- ( h = g -> ( h e. ( J Cn J ) <-> g e. ( J Cn J ) ) ) |
77 |
|
eleq1 |
|- ( h = ( f oF ( +g ` R ) g ) -> ( h e. ( J Cn J ) <-> ( f oF ( +g ` R ) g ) e. ( J Cn J ) ) ) |
78 |
|
eleq1 |
|- ( h = ( f oF ( .r ` R ) g ) -> ( h e. ( J Cn J ) <-> ( f oF ( .r ` R ) g ) e. ( J Cn J ) ) ) |
79 |
|
eleq1 |
|- ( h = ( E ` F ) -> ( h e. ( J Cn J ) <-> ( E ` F ) e. ( J Cn J ) ) ) |
80 |
23
|
adantr |
|- ( ( ph /\ f e. K ) -> J e. ( TopOn ` K ) ) |
81 |
|
simpr |
|- ( ( ph /\ f e. K ) -> f e. K ) |
82 |
|
cnconst2 |
|- ( ( J e. ( TopOn ` K ) /\ J e. ( TopOn ` K ) /\ f e. K ) -> ( K X. { f } ) e. ( J Cn J ) ) |
83 |
80 80 81 82
|
syl3anc |
|- ( ( ph /\ f e. K ) -> ( K X. { f } ) e. ( J Cn J ) ) |
84 |
|
idcn |
|- ( J e. ( TopOn ` K ) -> ( _I |` K ) e. ( J Cn J ) ) |
85 |
23 84
|
syl |
|- ( ph -> ( _I |` K ) e. ( J Cn J ) ) |
86 |
|
eqid |
|- ( R ^s K ) = ( R ^s K ) |
87 |
2 1 86 4
|
evl1rhm |
|- ( R e. CRing -> E e. ( P RingHom ( R ^s K ) ) ) |
88 |
|
eqid |
|- ( Base ` ( R ^s K ) ) = ( Base ` ( R ^s K ) ) |
89 |
3 88
|
rhmf |
|- ( E e. ( P RingHom ( R ^s K ) ) -> E : B --> ( Base ` ( R ^s K ) ) ) |
90 |
|
ffn |
|- ( E : B --> ( Base ` ( R ^s K ) ) -> E Fn B ) |
91 |
|
dffn3 |
|- ( E Fn B <-> E : B --> ran E ) |
92 |
91
|
biimpi |
|- ( E Fn B -> E : B --> ran E ) |
93 |
87 89 90 92
|
4syl |
|- ( R e. CRing -> E : B --> ran E ) |
94 |
6 93
|
syl |
|- ( ph -> E : B --> ran E ) |
95 |
94 8
|
ffvelrnd |
|- ( ph -> ( E ` F ) e. ran E ) |
96 |
2
|
rneqi |
|- ran E = ran ( eval1 ` R ) |
97 |
95 96
|
eleqtrdi |
|- ( ph -> ( E ` F ) e. ran ( eval1 ` R ) ) |
98 |
4 9 10 11 56 72 73 74 75 76 77 78 79 83 85 97
|
pf1ind |
|- ( ph -> ( E ` F ) e. ( J Cn J ) ) |