| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pl1cn.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pl1cn.e | ⊢ 𝐸  =  ( eval1 ‘ 𝑅 ) | 
						
							| 3 |  | pl1cn.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | pl1cn.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | pl1cn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑅 ) | 
						
							| 6 |  | pl1cn.1 | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 7 |  | pl1cn.2 | ⊢ ( 𝜑  →  𝑅  ∈  TopRing ) | 
						
							| 8 |  | pl1cn.3 | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ran  ( eval1 ‘ 𝑅 )  =  ran  ( eval1 ‘ 𝑅 ) | 
						
							| 12 | 4 | fvexi | ⊢ 𝐾  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  𝐾  ∈  V ) | 
						
							| 14 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  ∧  𝑥  ∈  𝐾 )  →  ( 𝑓 ‘ 𝑥 )  ∈  V ) | 
						
							| 15 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  ∧  𝑥  ∈  𝐾 )  →  ( 𝑔 ‘ 𝑥 )  ∈  V ) | 
						
							| 16 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  𝜑 ) | 
						
							| 17 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 18 | 17 17 | cnf | ⊢ ( 𝑓  ∈  ( 𝐽  Cn  𝐽 )  →  𝑓 : ∪  𝐽 ⟶ ∪  𝐽 ) | 
						
							| 19 | 18 | ffnd | ⊢ ( 𝑓  ∈  ( 𝐽  Cn  𝐽 )  →  𝑓  Fn  ∪  𝐽 ) | 
						
							| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  𝑓  Fn  ∪  𝐽 ) | 
						
							| 21 |  | trgtgp | ⊢ ( 𝑅  ∈  TopRing  →  𝑅  ∈  TopGrp ) | 
						
							| 22 | 5 4 | tgptopon | ⊢ ( 𝑅  ∈  TopGrp  →  𝐽  ∈  ( TopOn ‘ 𝐾 ) ) | 
						
							| 23 | 7 21 22 | 3syl | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝐾 ) ) | 
						
							| 24 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝐾 )  →  𝐾  =  ∪  𝐽 ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  𝐾  =  ∪  𝐽 ) | 
						
							| 26 | 25 | fneq2d | ⊢ ( 𝜑  →  ( 𝑓  Fn  𝐾  ↔  𝑓  Fn  ∪  𝐽 ) ) | 
						
							| 27 |  | dffn5 | ⊢ ( 𝑓  Fn  𝐾  ↔  𝑓  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 28 | 26 27 | bitr3di | ⊢ ( 𝜑  →  ( 𝑓  Fn  ∪  𝐽  ↔  𝑓  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 28 | biimpa | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ∪  𝐽 )  →  𝑓  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 30 | 16 20 29 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  𝑓  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 31 | 17 17 | cnf | ⊢ ( 𝑔  ∈  ( 𝐽  Cn  𝐽 )  →  𝑔 : ∪  𝐽 ⟶ ∪  𝐽 ) | 
						
							| 32 | 31 | ffnd | ⊢ ( 𝑔  ∈  ( 𝐽  Cn  𝐽 )  →  𝑔  Fn  ∪  𝐽 ) | 
						
							| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  𝑔  Fn  ∪  𝐽 ) | 
						
							| 34 | 25 | fneq2d | ⊢ ( 𝜑  →  ( 𝑔  Fn  𝐾  ↔  𝑔  Fn  ∪  𝐽 ) ) | 
						
							| 35 |  | dffn5 | ⊢ ( 𝑔  Fn  𝐾  ↔  𝑔  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 36 | 34 35 | bitr3di | ⊢ ( 𝜑  →  ( 𝑔  Fn  ∪  𝐽  ↔  𝑔  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 37 | 36 | biimpa | ⊢ ( ( 𝜑  ∧  𝑔  Fn  ∪  𝐽 )  →  𝑔  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 38 | 16 33 37 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  𝑔  =  ( 𝑥  ∈  𝐾  ↦  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 39 | 13 14 15 30 38 | offval2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑓  ∘f  ( +g ‘ 𝑅 ) 𝑔 )  =  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 40 | 23 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  𝐽  ∈  ( TopOn ‘ 𝐾 ) ) | 
						
							| 41 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  𝑓  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 42 | 30 41 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑥  ∈  𝐾  ↦  ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 43 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  𝑔  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 44 | 38 43 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑥  ∈  𝐾  ↦  ( 𝑔 ‘ 𝑥 ) )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 45 |  | eqid | ⊢ ( +𝑓 ‘ 𝑅 )  =  ( +𝑓 ‘ 𝑅 ) | 
						
							| 46 | 4 9 45 | plusffval | ⊢ ( +𝑓 ‘ 𝑅 )  =  ( 𝑦  ∈  𝐾 ,  𝑧  ∈  𝐾  ↦  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 47 | 5 45 | tgpcn | ⊢ ( 𝑅  ∈  TopGrp  →  ( +𝑓 ‘ 𝑅 )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 48 | 7 21 47 | 3syl | ⊢ ( 𝜑  →  ( +𝑓 ‘ 𝑅 )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 49 | 46 48 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐾 ,  𝑧  ∈  𝐾  ↦  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 50 | 49 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑦  ∈  𝐾 ,  𝑧  ∈  𝐾  ↦  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 51 |  | oveq12 | ⊢ ( ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  ∧  𝑧  =  ( 𝑔 ‘ 𝑥 ) )  →  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 52 | 40 42 44 40 40 50 51 | cnmpt12 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 53 | 39 52 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑓  ∘f  ( +g ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 54 | 53 | 3adant2l | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 ) )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑓  ∘f  ( +g ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 55 | 54 | 3adant3l | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 ) )  ∧  ( 𝑔  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) ) )  →  ( 𝑓  ∘f  ( +g ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 56 | 55 | 3expb | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 ) )  ∧  ( 𝑔  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) ) ) )  →  ( 𝑓  ∘f  ( +g ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 57 | 13 14 15 30 38 | offval2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑓  ∘f  ( .r ‘ 𝑅 ) 𝑔 )  =  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 58 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 59 | 58 4 | mgpbas | ⊢ 𝐾  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 60 | 58 10 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 61 |  | eqid | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) )  =  ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 62 | 59 60 61 | plusffval | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) )  =  ( 𝑦  ∈  𝐾 ,  𝑧  ∈  𝐾  ↦  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 63 | 5 61 | mulrcn | ⊢ ( 𝑅  ∈  TopRing  →  ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 64 | 7 63 | syl | ⊢ ( 𝜑  →  ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 65 | 62 64 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐾 ,  𝑧  ∈  𝐾  ↦  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 66 | 65 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑦  ∈  𝐾 ,  𝑧  ∈  𝐾  ↦  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 ) ) | 
						
							| 67 |  | oveq12 | ⊢ ( ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  ∧  𝑧  =  ( 𝑔 ‘ 𝑥 ) )  →  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 68 | 40 42 44 40 40 66 67 | cnmpt12 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 69 | 57 68 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑓  ∘f  ( .r ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 70 | 69 | 3adant2l | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 ) )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) )  →  ( 𝑓  ∘f  ( .r ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 71 | 70 | 3adant3l | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 ) )  ∧  ( 𝑔  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) ) )  →  ( 𝑓  ∘f  ( .r ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 72 | 71 | 3expb | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑓  ∈  ( 𝐽  Cn  𝐽 ) )  ∧  ( 𝑔  ∈  ran  ( eval1 ‘ 𝑅 )  ∧  𝑔  ∈  ( 𝐽  Cn  𝐽 ) ) ) )  →  ( 𝑓  ∘f  ( .r ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 73 |  | eleq1 | ⊢ ( ℎ  =  ( 𝐾  ×  { 𝑓 } )  →  ( ℎ  ∈  ( 𝐽  Cn  𝐽 )  ↔  ( 𝐾  ×  { 𝑓 } )  ∈  ( 𝐽  Cn  𝐽 ) ) ) | 
						
							| 74 |  | eleq1 | ⊢ ( ℎ  =  (  I   ↾  𝐾 )  →  ( ℎ  ∈  ( 𝐽  Cn  𝐽 )  ↔  (  I   ↾  𝐾 )  ∈  ( 𝐽  Cn  𝐽 ) ) ) | 
						
							| 75 |  | eleq1 | ⊢ ( ℎ  =  𝑓  →  ( ℎ  ∈  ( 𝐽  Cn  𝐽 )  ↔  𝑓  ∈  ( 𝐽  Cn  𝐽 ) ) ) | 
						
							| 76 |  | eleq1 | ⊢ ( ℎ  =  𝑔  →  ( ℎ  ∈  ( 𝐽  Cn  𝐽 )  ↔  𝑔  ∈  ( 𝐽  Cn  𝐽 ) ) ) | 
						
							| 77 |  | eleq1 | ⊢ ( ℎ  =  ( 𝑓  ∘f  ( +g ‘ 𝑅 ) 𝑔 )  →  ( ℎ  ∈  ( 𝐽  Cn  𝐽 )  ↔  ( 𝑓  ∘f  ( +g ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) ) | 
						
							| 78 |  | eleq1 | ⊢ ( ℎ  =  ( 𝑓  ∘f  ( .r ‘ 𝑅 ) 𝑔 )  →  ( ℎ  ∈  ( 𝐽  Cn  𝐽 )  ↔  ( 𝑓  ∘f  ( .r ‘ 𝑅 ) 𝑔 )  ∈  ( 𝐽  Cn  𝐽 ) ) ) | 
						
							| 79 |  | eleq1 | ⊢ ( ℎ  =  ( 𝐸 ‘ 𝐹 )  →  ( ℎ  ∈  ( 𝐽  Cn  𝐽 )  ↔  ( 𝐸 ‘ 𝐹 )  ∈  ( 𝐽  Cn  𝐽 ) ) ) | 
						
							| 80 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐾 )  →  𝐽  ∈  ( TopOn ‘ 𝐾 ) ) | 
						
							| 81 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐾 )  →  𝑓  ∈  𝐾 ) | 
						
							| 82 |  | cnconst2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝐾 )  ∧  𝐽  ∈  ( TopOn ‘ 𝐾 )  ∧  𝑓  ∈  𝐾 )  →  ( 𝐾  ×  { 𝑓 } )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 83 | 80 80 81 82 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐾 )  →  ( 𝐾  ×  { 𝑓 } )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 84 |  | idcn | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝐾 )  →  (  I   ↾  𝐾 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 85 | 23 84 | syl | ⊢ ( 𝜑  →  (  I   ↾  𝐾 )  ∈  ( 𝐽  Cn  𝐽 ) ) | 
						
							| 86 |  | eqid | ⊢ ( 𝑅  ↑s  𝐾 )  =  ( 𝑅  ↑s  𝐾 ) | 
						
							| 87 | 2 1 86 4 | evl1rhm | ⊢ ( 𝑅  ∈  CRing  →  𝐸  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  𝐾 ) ) ) | 
						
							| 88 |  | eqid | ⊢ ( Base ‘ ( 𝑅  ↑s  𝐾 ) )  =  ( Base ‘ ( 𝑅  ↑s  𝐾 ) ) | 
						
							| 89 | 3 88 | rhmf | ⊢ ( 𝐸  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  𝐾 ) )  →  𝐸 : 𝐵 ⟶ ( Base ‘ ( 𝑅  ↑s  𝐾 ) ) ) | 
						
							| 90 |  | ffn | ⊢ ( 𝐸 : 𝐵 ⟶ ( Base ‘ ( 𝑅  ↑s  𝐾 ) )  →  𝐸  Fn  𝐵 ) | 
						
							| 91 |  | dffn3 | ⊢ ( 𝐸  Fn  𝐵  ↔  𝐸 : 𝐵 ⟶ ran  𝐸 ) | 
						
							| 92 | 91 | biimpi | ⊢ ( 𝐸  Fn  𝐵  →  𝐸 : 𝐵 ⟶ ran  𝐸 ) | 
						
							| 93 | 87 89 90 92 | 4syl | ⊢ ( 𝑅  ∈  CRing  →  𝐸 : 𝐵 ⟶ ran  𝐸 ) | 
						
							| 94 | 6 93 | syl | ⊢ ( 𝜑  →  𝐸 : 𝐵 ⟶ ran  𝐸 ) | 
						
							| 95 | 94 8 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝐹 )  ∈  ran  𝐸 ) | 
						
							| 96 | 2 | rneqi | ⊢ ran  𝐸  =  ran  ( eval1 ‘ 𝑅 ) | 
						
							| 97 | 95 96 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝐹 )  ∈  ran  ( eval1 ‘ 𝑅 ) ) | 
						
							| 98 | 4 9 10 11 56 72 73 74 75 76 77 78 79 83 85 97 | pf1ind | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝐹 )  ∈  ( 𝐽  Cn  𝐽 ) ) |