Step |
Hyp |
Ref |
Expression |
1 |
|
pl1cn.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pl1cn.e |
⊢ 𝐸 = ( eval1 ‘ 𝑅 ) |
3 |
|
pl1cn.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
pl1cn.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
pl1cn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) |
6 |
|
pl1cn.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
pl1cn.2 |
⊢ ( 𝜑 → 𝑅 ∈ TopRing ) |
8 |
|
pl1cn.3 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ran ( eval1 ‘ 𝑅 ) = ran ( eval1 ‘ 𝑅 ) |
12 |
4
|
fvexi |
⊢ 𝐾 ∈ V |
13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → 𝐾 ∈ V ) |
14 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑓 ‘ 𝑥 ) ∈ V ) |
15 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑔 ‘ 𝑥 ) ∈ V ) |
16 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → 𝜑 ) |
17 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
18 |
17 17
|
cnf |
⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐽 ) → 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐽 ) |
19 |
18
|
ffnd |
⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐽 ) → 𝑓 Fn ∪ 𝐽 ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → 𝑓 Fn ∪ 𝐽 ) |
21 |
|
trgtgp |
⊢ ( 𝑅 ∈ TopRing → 𝑅 ∈ TopGrp ) |
22 |
5 4
|
tgptopon |
⊢ ( 𝑅 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝐾 ) ) |
23 |
7 21 22
|
3syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐾 ) ) |
24 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐾 ) → 𝐾 = ∪ 𝐽 ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝐾 = ∪ 𝐽 ) |
26 |
25
|
fneq2d |
⊢ ( 𝜑 → ( 𝑓 Fn 𝐾 ↔ 𝑓 Fn ∪ 𝐽 ) ) |
27 |
|
dffn5 |
⊢ ( 𝑓 Fn 𝐾 ↔ 𝑓 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
28 |
26 27
|
bitr3di |
⊢ ( 𝜑 → ( 𝑓 Fn ∪ 𝐽 ↔ 𝑓 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑓 ‘ 𝑥 ) ) ) ) |
29 |
28
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ∪ 𝐽 ) → 𝑓 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
30 |
16 20 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → 𝑓 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
31 |
17 17
|
cnf |
⊢ ( 𝑔 ∈ ( 𝐽 Cn 𝐽 ) → 𝑔 : ∪ 𝐽 ⟶ ∪ 𝐽 ) |
32 |
31
|
ffnd |
⊢ ( 𝑔 ∈ ( 𝐽 Cn 𝐽 ) → 𝑔 Fn ∪ 𝐽 ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → 𝑔 Fn ∪ 𝐽 ) |
34 |
25
|
fneq2d |
⊢ ( 𝜑 → ( 𝑔 Fn 𝐾 ↔ 𝑔 Fn ∪ 𝐽 ) ) |
35 |
|
dffn5 |
⊢ ( 𝑔 Fn 𝐾 ↔ 𝑔 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
36 |
34 35
|
bitr3di |
⊢ ( 𝜑 → ( 𝑔 Fn ∪ 𝐽 ↔ 𝑔 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) |
37 |
36
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑔 Fn ∪ 𝐽 ) → 𝑔 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
38 |
16 33 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → 𝑔 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
39 |
13 14 15 30 38
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑓 ∘f ( +g ‘ 𝑅 ) 𝑔 ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
40 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ 𝐾 ) ) |
41 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ) |
42 |
30 41
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝐾 ↦ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
43 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) |
44 |
38 43
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝐾 ↦ ( 𝑔 ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
45 |
|
eqid |
⊢ ( +𝑓 ‘ 𝑅 ) = ( +𝑓 ‘ 𝑅 ) |
46 |
4 9 45
|
plusffval |
⊢ ( +𝑓 ‘ 𝑅 ) = ( 𝑦 ∈ 𝐾 , 𝑧 ∈ 𝐾 ↦ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) |
47 |
5 45
|
tgpcn |
⊢ ( 𝑅 ∈ TopGrp → ( +𝑓 ‘ 𝑅 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
48 |
7 21 47
|
3syl |
⊢ ( 𝜑 → ( +𝑓 ‘ 𝑅 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
49 |
46 48
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐾 , 𝑧 ∈ 𝐾 ↦ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
50 |
49
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑦 ∈ 𝐾 , 𝑧 ∈ 𝐾 ↦ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
51 |
|
oveq12 |
⊢ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) ∧ 𝑧 = ( 𝑔 ‘ 𝑥 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) |
52 |
40 42 44 40 40 50 51
|
cnmpt12 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
53 |
39 52
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑓 ∘f ( +g ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
54 |
53
|
3adant2l |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑓 ∘f ( +g ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
55 |
54
|
3adant3l |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ) ∧ ( 𝑔 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) ) → ( 𝑓 ∘f ( +g ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
56 |
55
|
3expb |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ) ∧ ( 𝑔 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) ) ) → ( 𝑓 ∘f ( +g ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
57 |
13 14 15 30 38
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑓 ∘f ( .r ‘ 𝑅 ) 𝑔 ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
58 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
59 |
58 4
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
60 |
58 10
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
61 |
|
eqid |
⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) |
62 |
59 60 61
|
plusffval |
⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( 𝑦 ∈ 𝐾 , 𝑧 ∈ 𝐾 ↦ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) |
63 |
5 61
|
mulrcn |
⊢ ( 𝑅 ∈ TopRing → ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
64 |
7 63
|
syl |
⊢ ( 𝜑 → ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
65 |
62 64
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐾 , 𝑧 ∈ 𝐾 ↦ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
66 |
65
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑦 ∈ 𝐾 , 𝑧 ∈ 𝐾 ↦ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
67 |
|
oveq12 |
⊢ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) ∧ 𝑧 = ( 𝑔 ‘ 𝑥 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) |
68 |
40 42 44 40 40 66 67
|
cnmpt12 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
69 |
57 68
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑓 ∘f ( .r ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
70 |
69
|
3adant2l |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑓 ∘f ( .r ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
71 |
70
|
3adant3l |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ) ∧ ( 𝑔 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) ) → ( 𝑓 ∘f ( .r ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
72 |
71
|
3expb |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ) ∧ ( 𝑔 ∈ ran ( eval1 ‘ 𝑅 ) ∧ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) ) ) → ( 𝑓 ∘f ( .r ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
73 |
|
eleq1 |
⊢ ( ℎ = ( 𝐾 × { 𝑓 } ) → ( ℎ ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝐾 × { 𝑓 } ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
74 |
|
eleq1 |
⊢ ( ℎ = ( I ↾ 𝐾 ) → ( ℎ ∈ ( 𝐽 Cn 𝐽 ) ↔ ( I ↾ 𝐾 ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
75 |
|
eleq1 |
⊢ ( ℎ = 𝑓 → ( ℎ ∈ ( 𝐽 Cn 𝐽 ) ↔ 𝑓 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
76 |
|
eleq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ∈ ( 𝐽 Cn 𝐽 ) ↔ 𝑔 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
77 |
|
eleq1 |
⊢ ( ℎ = ( 𝑓 ∘f ( +g ‘ 𝑅 ) 𝑔 ) → ( ℎ ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑓 ∘f ( +g ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
78 |
|
eleq1 |
⊢ ( ℎ = ( 𝑓 ∘f ( .r ‘ 𝑅 ) 𝑔 ) → ( ℎ ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑓 ∘f ( .r ‘ 𝑅 ) 𝑔 ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
79 |
|
eleq1 |
⊢ ( ℎ = ( 𝐸 ‘ 𝐹 ) → ( ℎ ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝐸 ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
80 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐾 ) → 𝐽 ∈ ( TopOn ‘ 𝐾 ) ) |
81 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐾 ) → 𝑓 ∈ 𝐾 ) |
82 |
|
cnconst2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐾 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝐾 ) ∧ 𝑓 ∈ 𝐾 ) → ( 𝐾 × { 𝑓 } ) ∈ ( 𝐽 Cn 𝐽 ) ) |
83 |
80 80 81 82
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐾 ) → ( 𝐾 × { 𝑓 } ) ∈ ( 𝐽 Cn 𝐽 ) ) |
84 |
|
idcn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐾 ) → ( I ↾ 𝐾 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
85 |
23 84
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝐾 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
86 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐾 ) = ( 𝑅 ↑s 𝐾 ) |
87 |
2 1 86 4
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝐸 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
88 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) |
89 |
3 88
|
rhmf |
⊢ ( 𝐸 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) → 𝐸 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
90 |
|
ffn |
⊢ ( 𝐸 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) → 𝐸 Fn 𝐵 ) |
91 |
|
dffn3 |
⊢ ( 𝐸 Fn 𝐵 ↔ 𝐸 : 𝐵 ⟶ ran 𝐸 ) |
92 |
91
|
biimpi |
⊢ ( 𝐸 Fn 𝐵 → 𝐸 : 𝐵 ⟶ ran 𝐸 ) |
93 |
87 89 90 92
|
4syl |
⊢ ( 𝑅 ∈ CRing → 𝐸 : 𝐵 ⟶ ran 𝐸 ) |
94 |
6 93
|
syl |
⊢ ( 𝜑 → 𝐸 : 𝐵 ⟶ ran 𝐸 ) |
95 |
94 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐹 ) ∈ ran 𝐸 ) |
96 |
2
|
rneqi |
⊢ ran 𝐸 = ran ( eval1 ‘ 𝑅 ) |
97 |
95 96
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐹 ) ∈ ran ( eval1 ‘ 𝑅 ) ) |
98 |
4 9 10 11 56 72 73 74 75 76 77 78 79 83 85 97
|
pf1ind |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐽 ) ) |