| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pl1cn.p |  | 
						
							| 2 |  | pl1cn.e |  | 
						
							| 3 |  | pl1cn.b |  | 
						
							| 4 |  | pl1cn.k |  | 
						
							| 5 |  | pl1cn.j |  | 
						
							| 6 |  | pl1cn.1 |  | 
						
							| 7 |  | pl1cn.2 |  | 
						
							| 8 |  | pl1cn.3 |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 4 | fvexi |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 |  | fvexd |  | 
						
							| 15 |  | fvexd |  | 
						
							| 16 |  | simp1 |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 17 | cnf |  | 
						
							| 19 | 18 | ffnd |  | 
						
							| 20 | 19 | 3ad2ant2 |  | 
						
							| 21 |  | trgtgp |  | 
						
							| 22 | 5 4 | tgptopon |  | 
						
							| 23 | 7 21 22 | 3syl |  | 
						
							| 24 |  | toponuni |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 25 | fneq2d |  | 
						
							| 27 |  | dffn5 |  | 
						
							| 28 | 26 27 | bitr3di |  | 
						
							| 29 | 28 | biimpa |  | 
						
							| 30 | 16 20 29 | syl2anc |  | 
						
							| 31 | 17 17 | cnf |  | 
						
							| 32 | 31 | ffnd |  | 
						
							| 33 | 32 | 3ad2ant3 |  | 
						
							| 34 | 25 | fneq2d |  | 
						
							| 35 |  | dffn5 |  | 
						
							| 36 | 34 35 | bitr3di |  | 
						
							| 37 | 36 | biimpa |  | 
						
							| 38 | 16 33 37 | syl2anc |  | 
						
							| 39 | 13 14 15 30 38 | offval2 |  | 
						
							| 40 | 23 | 3ad2ant1 |  | 
						
							| 41 |  | simp2 |  | 
						
							| 42 | 30 41 | eqeltrrd |  | 
						
							| 43 |  | simp3 |  | 
						
							| 44 | 38 43 | eqeltrrd |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 4 9 45 | plusffval |  | 
						
							| 47 | 5 45 | tgpcn |  | 
						
							| 48 | 7 21 47 | 3syl |  | 
						
							| 49 | 46 48 | eqeltrrid |  | 
						
							| 50 | 49 | 3ad2ant1 |  | 
						
							| 51 |  | oveq12 |  | 
						
							| 52 | 40 42 44 40 40 50 51 | cnmpt12 |  | 
						
							| 53 | 39 52 | eqeltrd |  | 
						
							| 54 | 53 | 3adant2l |  | 
						
							| 55 | 54 | 3adant3l |  | 
						
							| 56 | 55 | 3expb |  | 
						
							| 57 | 13 14 15 30 38 | offval2 |  | 
						
							| 58 |  | eqid |  | 
						
							| 59 | 58 4 | mgpbas |  | 
						
							| 60 | 58 10 | mgpplusg |  | 
						
							| 61 |  | eqid |  | 
						
							| 62 | 59 60 61 | plusffval |  | 
						
							| 63 | 5 61 | mulrcn |  | 
						
							| 64 | 7 63 | syl |  | 
						
							| 65 | 62 64 | eqeltrrid |  | 
						
							| 66 | 65 | 3ad2ant1 |  | 
						
							| 67 |  | oveq12 |  | 
						
							| 68 | 40 42 44 40 40 66 67 | cnmpt12 |  | 
						
							| 69 | 57 68 | eqeltrd |  | 
						
							| 70 | 69 | 3adant2l |  | 
						
							| 71 | 70 | 3adant3l |  | 
						
							| 72 | 71 | 3expb |  | 
						
							| 73 |  | eleq1 |  | 
						
							| 74 |  | eleq1 |  | 
						
							| 75 |  | eleq1 |  | 
						
							| 76 |  | eleq1 |  | 
						
							| 77 |  | eleq1 |  | 
						
							| 78 |  | eleq1 |  | 
						
							| 79 |  | eleq1 |  | 
						
							| 80 | 23 | adantr |  | 
						
							| 81 |  | simpr |  | 
						
							| 82 |  | cnconst2 |  | 
						
							| 83 | 80 80 81 82 | syl3anc |  | 
						
							| 84 |  | idcn |  | 
						
							| 85 | 23 84 | syl |  | 
						
							| 86 |  | eqid |  | 
						
							| 87 | 2 1 86 4 | evl1rhm |  | 
						
							| 88 |  | eqid |  | 
						
							| 89 | 3 88 | rhmf |  | 
						
							| 90 |  | ffn |  | 
						
							| 91 |  | dffn3 |  | 
						
							| 92 | 91 | biimpi |  | 
						
							| 93 | 87 89 90 92 | 4syl |  | 
						
							| 94 | 6 93 | syl |  | 
						
							| 95 | 94 8 | ffvelcdmd |  | 
						
							| 96 | 2 | rneqi |  | 
						
							| 97 | 95 96 | eleqtrdi |  | 
						
							| 98 | 4 9 10 11 56 72 73 74 75 76 77 78 79 83 85 97 | pf1ind |  |