Metamath Proof Explorer


Theorem pl1cn

Description: A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018)

Ref Expression
Hypotheses pl1cn.p P = Poly 1 R
pl1cn.e E = eval 1 R
pl1cn.b B = Base P
pl1cn.k K = Base R
pl1cn.j J = TopOpen R
pl1cn.1 φ R CRing
pl1cn.2 φ R TopRing
pl1cn.3 φ F B
Assertion pl1cn φ E F J Cn J

Proof

Step Hyp Ref Expression
1 pl1cn.p P = Poly 1 R
2 pl1cn.e E = eval 1 R
3 pl1cn.b B = Base P
4 pl1cn.k K = Base R
5 pl1cn.j J = TopOpen R
6 pl1cn.1 φ R CRing
7 pl1cn.2 φ R TopRing
8 pl1cn.3 φ F B
9 eqid + R = + R
10 eqid R = R
11 eqid ran eval 1 R = ran eval 1 R
12 4 fvexi K V
13 12 a1i φ f J Cn J g J Cn J K V
14 fvexd φ f J Cn J g J Cn J x K f x V
15 fvexd φ f J Cn J g J Cn J x K g x V
16 simp1 φ f J Cn J g J Cn J φ
17 eqid J = J
18 17 17 cnf f J Cn J f : J J
19 18 ffnd f J Cn J f Fn J
20 19 3ad2ant2 φ f J Cn J g J Cn J f Fn J
21 trgtgp R TopRing R TopGrp
22 5 4 tgptopon R TopGrp J TopOn K
23 7 21 22 3syl φ J TopOn K
24 toponuni J TopOn K K = J
25 23 24 syl φ K = J
26 25 fneq2d φ f Fn K f Fn J
27 dffn5 f Fn K f = x K f x
28 26 27 bitr3di φ f Fn J f = x K f x
29 28 biimpa φ f Fn J f = x K f x
30 16 20 29 syl2anc φ f J Cn J g J Cn J f = x K f x
31 17 17 cnf g J Cn J g : J J
32 31 ffnd g J Cn J g Fn J
33 32 3ad2ant3 φ f J Cn J g J Cn J g Fn J
34 25 fneq2d φ g Fn K g Fn J
35 dffn5 g Fn K g = x K g x
36 34 35 bitr3di φ g Fn J g = x K g x
37 36 biimpa φ g Fn J g = x K g x
38 16 33 37 syl2anc φ f J Cn J g J Cn J g = x K g x
39 13 14 15 30 38 offval2 φ f J Cn J g J Cn J f + R f g = x K f x + R g x
40 23 3ad2ant1 φ f J Cn J g J Cn J J TopOn K
41 simp2 φ f J Cn J g J Cn J f J Cn J
42 30 41 eqeltrrd φ f J Cn J g J Cn J x K f x J Cn J
43 simp3 φ f J Cn J g J Cn J g J Cn J
44 38 43 eqeltrrd φ f J Cn J g J Cn J x K g x J Cn J
45 eqid + 𝑓 R = + 𝑓 R
46 4 9 45 plusffval + 𝑓 R = y K , z K y + R z
47 5 45 tgpcn R TopGrp + 𝑓 R J × t J Cn J
48 7 21 47 3syl φ + 𝑓 R J × t J Cn J
49 46 48 eqeltrrid φ y K , z K y + R z J × t J Cn J
50 49 3ad2ant1 φ f J Cn J g J Cn J y K , z K y + R z J × t J Cn J
51 oveq12 y = f x z = g x y + R z = f x + R g x
52 40 42 44 40 40 50 51 cnmpt12 φ f J Cn J g J Cn J x K f x + R g x J Cn J
53 39 52 eqeltrd φ f J Cn J g J Cn J f + R f g J Cn J
54 53 3adant2l φ f ran eval 1 R f J Cn J g J Cn J f + R f g J Cn J
55 54 3adant3l φ f ran eval 1 R f J Cn J g ran eval 1 R g J Cn J f + R f g J Cn J
56 55 3expb φ f ran eval 1 R f J Cn J g ran eval 1 R g J Cn J f + R f g J Cn J
57 13 14 15 30 38 offval2 φ f J Cn J g J Cn J f R f g = x K f x R g x
58 eqid mulGrp R = mulGrp R
59 58 4 mgpbas K = Base mulGrp R
60 58 10 mgpplusg R = + mulGrp R
61 eqid + 𝑓 mulGrp R = + 𝑓 mulGrp R
62 59 60 61 plusffval + 𝑓 mulGrp R = y K , z K y R z
63 5 61 mulrcn R TopRing + 𝑓 mulGrp R J × t J Cn J
64 7 63 syl φ + 𝑓 mulGrp R J × t J Cn J
65 62 64 eqeltrrid φ y K , z K y R z J × t J Cn J
66 65 3ad2ant1 φ f J Cn J g J Cn J y K , z K y R z J × t J Cn J
67 oveq12 y = f x z = g x y R z = f x R g x
68 40 42 44 40 40 66 67 cnmpt12 φ f J Cn J g J Cn J x K f x R g x J Cn J
69 57 68 eqeltrd φ f J Cn J g J Cn J f R f g J Cn J
70 69 3adant2l φ f ran eval 1 R f J Cn J g J Cn J f R f g J Cn J
71 70 3adant3l φ f ran eval 1 R f J Cn J g ran eval 1 R g J Cn J f R f g J Cn J
72 71 3expb φ f ran eval 1 R f J Cn J g ran eval 1 R g J Cn J f R f g J Cn J
73 eleq1 h = K × f h J Cn J K × f J Cn J
74 eleq1 h = I K h J Cn J I K J Cn J
75 eleq1 h = f h J Cn J f J Cn J
76 eleq1 h = g h J Cn J g J Cn J
77 eleq1 h = f + R f g h J Cn J f + R f g J Cn J
78 eleq1 h = f R f g h J Cn J f R f g J Cn J
79 eleq1 h = E F h J Cn J E F J Cn J
80 23 adantr φ f K J TopOn K
81 simpr φ f K f K
82 cnconst2 J TopOn K J TopOn K f K K × f J Cn J
83 80 80 81 82 syl3anc φ f K K × f J Cn J
84 idcn J TopOn K I K J Cn J
85 23 84 syl φ I K J Cn J
86 eqid R 𝑠 K = R 𝑠 K
87 2 1 86 4 evl1rhm R CRing E P RingHom R 𝑠 K
88 eqid Base R 𝑠 K = Base R 𝑠 K
89 3 88 rhmf E P RingHom R 𝑠 K E : B Base R 𝑠 K
90 ffn E : B Base R 𝑠 K E Fn B
91 dffn3 E Fn B E : B ran E
92 91 biimpi E Fn B E : B ran E
93 87 89 90 92 4syl R CRing E : B ran E
94 6 93 syl φ E : B ran E
95 94 8 ffvelrnd φ E F ran E
96 2 rneqi ran E = ran eval 1 R
97 95 96 eleqtrdi φ E F ran eval 1 R
98 4 9 10 11 56 72 73 74 75 76 77 78 79 83 85 97 pf1ind φ E F J Cn J