Step |
Hyp |
Ref |
Expression |
1 |
|
quad1.a |
|- ( ph -> A e. CC ) |
2 |
|
quad1.z |
|- ( ph -> A =/= 0 ) |
3 |
|
quad1.b |
|- ( ph -> B e. CC ) |
4 |
|
quad1.c |
|- ( ph -> C e. CC ) |
5 |
|
quad1.d |
|- ( ph -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
6 |
1
|
adantr |
|- ( ( ph /\ x e. CC ) -> A e. CC ) |
7 |
2
|
adantr |
|- ( ( ph /\ x e. CC ) -> A =/= 0 ) |
8 |
3
|
adantr |
|- ( ( ph /\ x e. CC ) -> B e. CC ) |
9 |
4
|
adantr |
|- ( ( ph /\ x e. CC ) -> C e. CC ) |
10 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
11 |
5
|
adantr |
|- ( ( ph /\ x e. CC ) -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
12 |
6 7 8 9 10 11
|
quad |
|- ( ( ph /\ x e. CC ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) |
13 |
12
|
reubidva |
|- ( ph -> ( E! x e. CC ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> E! x e. CC ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) |
14 |
3
|
negcld |
|- ( ph -> -u B e. CC ) |
15 |
3
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
16 |
|
4cn |
|- 4 e. CC |
17 |
16
|
a1i |
|- ( ph -> 4 e. CC ) |
18 |
1 4
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
19 |
17 18
|
mulcld |
|- ( ph -> ( 4 x. ( A x. C ) ) e. CC ) |
20 |
15 19
|
subcld |
|- ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) |
21 |
5 20
|
eqeltrd |
|- ( ph -> D e. CC ) |
22 |
21
|
sqrtcld |
|- ( ph -> ( sqrt ` D ) e. CC ) |
23 |
14 22
|
addcld |
|- ( ph -> ( -u B + ( sqrt ` D ) ) e. CC ) |
24 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
25 |
24 1
|
mulcld |
|- ( ph -> ( 2 x. A ) e. CC ) |
26 |
|
2ne0 |
|- 2 =/= 0 |
27 |
26
|
a1i |
|- ( ph -> 2 =/= 0 ) |
28 |
24 1 27 2
|
mulne0d |
|- ( ph -> ( 2 x. A ) =/= 0 ) |
29 |
23 25 28
|
divcld |
|- ( ph -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) |
30 |
14 22
|
subcld |
|- ( ph -> ( -u B - ( sqrt ` D ) ) e. CC ) |
31 |
30 25 28
|
divcld |
|- ( ph -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) |
32 |
|
euoreqb |
|- ( ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC /\ ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) -> ( E! x e. CC ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) |
33 |
29 31 32
|
syl2anc |
|- ( ph -> ( E! x e. CC ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) |
34 |
14 22 25 28
|
divdird |
|- ( ph -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) |
35 |
14 22 25 28
|
divsubdird |
|- ( ph -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) - ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) |
36 |
14 25 28
|
divcld |
|- ( ph -> ( -u B / ( 2 x. A ) ) e. CC ) |
37 |
22 25 28
|
divcld |
|- ( ph -> ( ( sqrt ` D ) / ( 2 x. A ) ) e. CC ) |
38 |
36 37
|
negsubd |
|- ( ph -> ( ( -u B / ( 2 x. A ) ) + -u ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) - ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) |
39 |
22 25 28
|
divnegd |
|- ( ph -> -u ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) |
40 |
39
|
oveq2d |
|- ( ph -> ( ( -u B / ( 2 x. A ) ) + -u ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) |
41 |
35 38 40
|
3eqtr2d |
|- ( ph -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) |
42 |
34 41
|
eqeq12d |
|- ( ph -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) ) |
43 |
22
|
negcld |
|- ( ph -> -u ( sqrt ` D ) e. CC ) |
44 |
43 25 28
|
divcld |
|- ( ph -> ( -u ( sqrt ` D ) / ( 2 x. A ) ) e. CC ) |
45 |
36 37 44
|
addcand |
|- ( ph -> ( ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) <-> ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) |
46 |
|
div11 |
|- ( ( ( sqrt ` D ) e. CC /\ -u ( sqrt ` D ) e. CC /\ ( ( 2 x. A ) e. CC /\ ( 2 x. A ) =/= 0 ) ) -> ( ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) <-> ( sqrt ` D ) = -u ( sqrt ` D ) ) ) |
47 |
22 43 25 28 46
|
syl112anc |
|- ( ph -> ( ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) <-> ( sqrt ` D ) = -u ( sqrt ` D ) ) ) |
48 |
22
|
eqnegd |
|- ( ph -> ( ( sqrt ` D ) = -u ( sqrt ` D ) <-> ( sqrt ` D ) = 0 ) ) |
49 |
|
cnsqrt00 |
|- ( D e. CC -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) |
50 |
21 49
|
syl |
|- ( ph -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) |
51 |
48 50
|
bitrd |
|- ( ph -> ( ( sqrt ` D ) = -u ( sqrt ` D ) <-> D = 0 ) ) |
52 |
45 47 51
|
3bitrd |
|- ( ph -> ( ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) <-> D = 0 ) ) |
53 |
42 52
|
bitrd |
|- ( ph -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> D = 0 ) ) |
54 |
13 33 53
|
3bitrd |
|- ( ph -> ( E! x e. CC ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> D = 0 ) ) |