| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quad1.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | quad1.z |  |-  ( ph -> A =/= 0 ) | 
						
							| 3 |  | quad1.b |  |-  ( ph -> B e. CC ) | 
						
							| 4 |  | quad1.c |  |-  ( ph -> C e. CC ) | 
						
							| 5 |  | quad1.d |  |-  ( ph -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) | 
						
							| 6 | 1 | adantr |  |-  ( ( ph /\ x e. CC ) -> A e. CC ) | 
						
							| 7 | 2 | adantr |  |-  ( ( ph /\ x e. CC ) -> A =/= 0 ) | 
						
							| 8 | 3 | adantr |  |-  ( ( ph /\ x e. CC ) -> B e. CC ) | 
						
							| 9 | 4 | adantr |  |-  ( ( ph /\ x e. CC ) -> C e. CC ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ x e. CC ) -> x e. CC ) | 
						
							| 11 | 5 | adantr |  |-  ( ( ph /\ x e. CC ) -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) | 
						
							| 12 | 6 7 8 9 10 11 | quad |  |-  ( ( ph /\ x e. CC ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 13 | 12 | reubidva |  |-  ( ph -> ( E! x e. CC ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> E! x e. CC ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 14 | 3 | negcld |  |-  ( ph -> -u B e. CC ) | 
						
							| 15 | 3 | sqcld |  |-  ( ph -> ( B ^ 2 ) e. CC ) | 
						
							| 16 |  | 4cn |  |-  4 e. CC | 
						
							| 17 | 16 | a1i |  |-  ( ph -> 4 e. CC ) | 
						
							| 18 | 1 4 | mulcld |  |-  ( ph -> ( A x. C ) e. CC ) | 
						
							| 19 | 17 18 | mulcld |  |-  ( ph -> ( 4 x. ( A x. C ) ) e. CC ) | 
						
							| 20 | 15 19 | subcld |  |-  ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) | 
						
							| 21 | 5 20 | eqeltrd |  |-  ( ph -> D e. CC ) | 
						
							| 22 | 21 | sqrtcld |  |-  ( ph -> ( sqrt ` D ) e. CC ) | 
						
							| 23 | 14 22 | addcld |  |-  ( ph -> ( -u B + ( sqrt ` D ) ) e. CC ) | 
						
							| 24 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 25 | 24 1 | mulcld |  |-  ( ph -> ( 2 x. A ) e. CC ) | 
						
							| 26 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 27 | 26 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 28 | 24 1 27 2 | mulne0d |  |-  ( ph -> ( 2 x. A ) =/= 0 ) | 
						
							| 29 | 23 25 28 | divcld |  |-  ( ph -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) | 
						
							| 30 | 14 22 | subcld |  |-  ( ph -> ( -u B - ( sqrt ` D ) ) e. CC ) | 
						
							| 31 | 30 25 28 | divcld |  |-  ( ph -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) | 
						
							| 32 |  | euoreqb |  |-  ( ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC /\ ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) -> ( E! x e. CC ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) | 
						
							| 33 | 29 31 32 | syl2anc |  |-  ( ph -> ( E! x e. CC ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) | 
						
							| 34 | 14 22 25 28 | divdird |  |-  ( ph -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 35 | 14 22 25 28 | divsubdird |  |-  ( ph -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) - ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 36 | 14 25 28 | divcld |  |-  ( ph -> ( -u B / ( 2 x. A ) ) e. CC ) | 
						
							| 37 | 22 25 28 | divcld |  |-  ( ph -> ( ( sqrt ` D ) / ( 2 x. A ) ) e. CC ) | 
						
							| 38 | 36 37 | negsubd |  |-  ( ph -> ( ( -u B / ( 2 x. A ) ) + -u ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) - ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 39 | 22 25 28 | divnegd |  |-  ( ph -> -u ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ph -> ( ( -u B / ( 2 x. A ) ) + -u ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 41 | 35 38 40 | 3eqtr2d |  |-  ( ph -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 42 | 34 41 | eqeq12d |  |-  ( ph -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) ) | 
						
							| 43 | 22 | negcld |  |-  ( ph -> -u ( sqrt ` D ) e. CC ) | 
						
							| 44 | 43 25 28 | divcld |  |-  ( ph -> ( -u ( sqrt ` D ) / ( 2 x. A ) ) e. CC ) | 
						
							| 45 | 36 37 44 | addcand |  |-  ( ph -> ( ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) <-> ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 46 |  | div11 |  |-  ( ( ( sqrt ` D ) e. CC /\ -u ( sqrt ` D ) e. CC /\ ( ( 2 x. A ) e. CC /\ ( 2 x. A ) =/= 0 ) ) -> ( ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) <-> ( sqrt ` D ) = -u ( sqrt ` D ) ) ) | 
						
							| 47 | 22 43 25 28 46 | syl112anc |  |-  ( ph -> ( ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) <-> ( sqrt ` D ) = -u ( sqrt ` D ) ) ) | 
						
							| 48 | 22 | eqnegd |  |-  ( ph -> ( ( sqrt ` D ) = -u ( sqrt ` D ) <-> ( sqrt ` D ) = 0 ) ) | 
						
							| 49 |  | cnsqrt00 |  |-  ( D e. CC -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) | 
						
							| 50 | 21 49 | syl |  |-  ( ph -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) | 
						
							| 51 | 48 50 | bitrd |  |-  ( ph -> ( ( sqrt ` D ) = -u ( sqrt ` D ) <-> D = 0 ) ) | 
						
							| 52 | 45 47 51 | 3bitrd |  |-  ( ph -> ( ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) <-> D = 0 ) ) | 
						
							| 53 | 42 52 | bitrd |  |-  ( ph -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> D = 0 ) ) | 
						
							| 54 | 13 33 53 | 3bitrd |  |-  ( ph -> ( E! x e. CC ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> D = 0 ) ) |