| Step | Hyp | Ref | Expression | 
						
							| 1 |  | requad2.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | requad2.z |  |-  ( ph -> A =/= 0 ) | 
						
							| 3 |  | requad2.b |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | requad2.c |  |-  ( ph -> C e. RR ) | 
						
							| 5 |  | requad2.d |  |-  ( ph -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) | 
						
							| 6 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ x e. RR ) -> A e. CC ) | 
						
							| 8 | 2 | adantr |  |-  ( ( ph /\ x e. RR ) -> A =/= 0 ) | 
						
							| 9 | 3 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ x e. RR ) -> B e. CC ) | 
						
							| 11 | 4 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ x e. RR ) -> C e. CC ) | 
						
							| 13 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ x e. RR ) -> x e. CC ) | 
						
							| 15 | 5 | adantr |  |-  ( ( ph /\ x e. RR ) -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) | 
						
							| 16 | 7 8 10 12 14 15 | quad |  |-  ( ( ph /\ x e. RR ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 17 |  | eleq1 |  |-  ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x e. RR <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) | 
						
							| 19 |  | 2re |  |-  2 e. RR | 
						
							| 20 | 19 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 21 | 20 1 | remulcld |  |-  ( ph -> ( 2 x. A ) e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> ( 2 x. A ) e. RR ) | 
						
							| 23 | 9 | negcld |  |-  ( ph -> -u B e. CC ) | 
						
							| 24 | 3 | resqcld |  |-  ( ph -> ( B ^ 2 ) e. RR ) | 
						
							| 25 |  | 4re |  |-  4 e. RR | 
						
							| 26 | 25 | a1i |  |-  ( ph -> 4 e. RR ) | 
						
							| 27 | 1 4 | remulcld |  |-  ( ph -> ( A x. C ) e. RR ) | 
						
							| 28 | 26 27 | remulcld |  |-  ( ph -> ( 4 x. ( A x. C ) ) e. RR ) | 
						
							| 29 | 24 28 | resubcld |  |-  ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. RR ) | 
						
							| 30 | 5 29 | eqeltrd |  |-  ( ph -> D e. RR ) | 
						
							| 31 | 30 | recnd |  |-  ( ph -> D e. CC ) | 
						
							| 32 | 31 | sqrtcld |  |-  ( ph -> ( sqrt ` D ) e. CC ) | 
						
							| 33 | 23 32 | addcld |  |-  ( ph -> ( -u B + ( sqrt ` D ) ) e. CC ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e. CC ) | 
						
							| 35 | 3 | renegcld |  |-  ( ph -> -u B e. RR ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> -u B e. RR ) | 
						
							| 37 | 32 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` D ) e. CC ) | 
						
							| 38 | 31 | negnegd |  |-  ( ph -> -u -u D = D ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> -u -u D = D ) | 
						
							| 40 | 39 | eqcomd |  |-  ( ( ph /\ -. 0 <_ D ) -> D = -u -u D ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` D ) = ( sqrt ` -u -u D ) ) | 
						
							| 42 | 30 | renegcld |  |-  ( ph -> -u D e. RR ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> -u D e. RR ) | 
						
							| 44 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 45 | 30 44 | ltnled |  |-  ( ph -> ( D < 0 <-> -. 0 <_ D ) ) | 
						
							| 46 |  | ltle |  |-  ( ( D e. RR /\ 0 e. RR ) -> ( D < 0 -> D <_ 0 ) ) | 
						
							| 47 | 30 44 46 | syl2anc |  |-  ( ph -> ( D < 0 -> D <_ 0 ) ) | 
						
							| 48 | 45 47 | sylbird |  |-  ( ph -> ( -. 0 <_ D -> D <_ 0 ) ) | 
						
							| 49 | 48 | imp |  |-  ( ( ph /\ -. 0 <_ D ) -> D <_ 0 ) | 
						
							| 50 | 30 | le0neg1d |  |-  ( ph -> ( D <_ 0 <-> 0 <_ -u D ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> ( D <_ 0 <-> 0 <_ -u D ) ) | 
						
							| 52 | 49 51 | mpbid |  |-  ( ( ph /\ -. 0 <_ D ) -> 0 <_ -u D ) | 
						
							| 53 | 43 52 | sqrtnegd |  |-  ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` -u -u D ) = ( _i x. ( sqrt ` -u D ) ) ) | 
						
							| 54 | 41 53 | eqtrd |  |-  ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` D ) = ( _i x. ( sqrt ` -u D ) ) ) | 
						
							| 55 |  | ax-icn |  |-  _i e. CC | 
						
							| 56 | 55 | a1i |  |-  ( ( ph /\ -. 0 <_ D ) -> _i e. CC ) | 
						
							| 57 | 31 | negcld |  |-  ( ph -> -u D e. CC ) | 
						
							| 58 | 57 | sqrtcld |  |-  ( ph -> ( sqrt ` -u D ) e. CC ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` -u D ) e. CC ) | 
						
							| 60 | 56 59 | mulcomd |  |-  ( ( ph /\ -. 0 <_ D ) -> ( _i x. ( sqrt ` -u D ) ) = ( ( sqrt ` -u D ) x. _i ) ) | 
						
							| 61 | 43 52 | resqrtcld |  |-  ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` -u D ) e. RR ) | 
						
							| 62 |  | inelr |  |-  -. _i e. RR | 
						
							| 63 |  | eldif |  |-  ( _i e. ( CC \ RR ) <-> ( _i e. CC /\ -. _i e. RR ) ) | 
						
							| 64 | 55 62 63 | mpbir2an |  |-  _i e. ( CC \ RR ) | 
						
							| 65 | 64 | a1i |  |-  ( ( ph /\ -. 0 <_ D ) -> _i e. ( CC \ RR ) ) | 
						
							| 66 | 30 | lt0neg1d |  |-  ( ph -> ( D < 0 <-> 0 < -u D ) ) | 
						
							| 67 |  | ltne |  |-  ( ( 0 e. RR /\ 0 < -u D ) -> -u D =/= 0 ) | 
						
							| 68 | 44 67 | sylan |  |-  ( ( ph /\ 0 < -u D ) -> -u D =/= 0 ) | 
						
							| 69 | 42 | adantr |  |-  ( ( ph /\ 0 < -u D ) -> -u D e. RR ) | 
						
							| 70 |  | ltle |  |-  ( ( 0 e. RR /\ -u D e. RR ) -> ( 0 < -u D -> 0 <_ -u D ) ) | 
						
							| 71 | 44 42 70 | syl2anc |  |-  ( ph -> ( 0 < -u D -> 0 <_ -u D ) ) | 
						
							| 72 | 71 | imp |  |-  ( ( ph /\ 0 < -u D ) -> 0 <_ -u D ) | 
						
							| 73 |  | sqrt00 |  |-  ( ( -u D e. RR /\ 0 <_ -u D ) -> ( ( sqrt ` -u D ) = 0 <-> -u D = 0 ) ) | 
						
							| 74 | 69 72 73 | syl2anc |  |-  ( ( ph /\ 0 < -u D ) -> ( ( sqrt ` -u D ) = 0 <-> -u D = 0 ) ) | 
						
							| 75 | 74 | bicomd |  |-  ( ( ph /\ 0 < -u D ) -> ( -u D = 0 <-> ( sqrt ` -u D ) = 0 ) ) | 
						
							| 76 | 75 | necon3bid |  |-  ( ( ph /\ 0 < -u D ) -> ( -u D =/= 0 <-> ( sqrt ` -u D ) =/= 0 ) ) | 
						
							| 77 | 68 76 | mpbid |  |-  ( ( ph /\ 0 < -u D ) -> ( sqrt ` -u D ) =/= 0 ) | 
						
							| 78 | 77 | ex |  |-  ( ph -> ( 0 < -u D -> ( sqrt ` -u D ) =/= 0 ) ) | 
						
							| 79 | 66 78 | sylbid |  |-  ( ph -> ( D < 0 -> ( sqrt ` -u D ) =/= 0 ) ) | 
						
							| 80 | 45 79 | sylbird |  |-  ( ph -> ( -. 0 <_ D -> ( sqrt ` -u D ) =/= 0 ) ) | 
						
							| 81 | 80 | imp |  |-  ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` -u D ) =/= 0 ) | 
						
							| 82 | 61 65 81 | recnmulnred |  |-  ( ( ph /\ -. 0 <_ D ) -> ( ( sqrt ` -u D ) x. _i ) e/ RR ) | 
						
							| 83 |  | df-nel |  |-  ( ( ( sqrt ` -u D ) x. _i ) e/ RR <-> -. ( ( sqrt ` -u D ) x. _i ) e. RR ) | 
						
							| 84 | 82 83 | sylib |  |-  ( ( ph /\ -. 0 <_ D ) -> -. ( ( sqrt ` -u D ) x. _i ) e. RR ) | 
						
							| 85 | 60 84 | eqneltrd |  |-  ( ( ph /\ -. 0 <_ D ) -> -. ( _i x. ( sqrt ` -u D ) ) e. RR ) | 
						
							| 86 | 54 85 | eqneltrd |  |-  ( ( ph /\ -. 0 <_ D ) -> -. ( sqrt ` D ) e. RR ) | 
						
							| 87 | 37 86 | eldifd |  |-  ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` D ) e. ( CC \ RR ) ) | 
						
							| 88 | 36 87 | readdcnnred |  |-  ( ( ph /\ -. 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e/ RR ) | 
						
							| 89 |  | df-nel |  |-  ( ( -u B + ( sqrt ` D ) ) e/ RR <-> -. ( -u B + ( sqrt ` D ) ) e. RR ) | 
						
							| 90 | 88 89 | sylib |  |-  ( ( ph /\ -. 0 <_ D ) -> -. ( -u B + ( sqrt ` D ) ) e. RR ) | 
						
							| 91 | 34 90 | eldifd |  |-  ( ( ph /\ -. 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e. ( CC \ RR ) ) | 
						
							| 92 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 93 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 94 | 93 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 95 | 92 6 94 2 | mulne0d |  |-  ( ph -> ( 2 x. A ) =/= 0 ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> ( 2 x. A ) =/= 0 ) | 
						
							| 97 | 22 91 96 | cndivrenred |  |-  ( ( ph /\ -. 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e/ RR ) | 
						
							| 98 |  | df-nel |  |-  ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e/ RR <-> -. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) | 
						
							| 99 | 97 98 | sylib |  |-  ( ( ph /\ -. 0 <_ D ) -> -. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) | 
						
							| 100 | 99 | ex |  |-  ( ph -> ( -. 0 <_ D -> -. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) | 
						
							| 101 | 100 | con4d |  |-  ( ph -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR -> 0 <_ D ) ) | 
						
							| 102 | 101 | adantr |  |-  ( ( ph /\ x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR -> 0 <_ D ) ) | 
						
							| 103 | 18 102 | sylbid |  |-  ( ( ph /\ x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR -> 0 <_ D ) ) | 
						
							| 104 | 103 | ex |  |-  ( ph -> ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x e. RR -> 0 <_ D ) ) ) | 
						
							| 105 |  | eleq1 |  |-  ( x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x e. RR <-> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) | 
						
							| 106 | 105 | adantl |  |-  ( ( ph /\ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR <-> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) | 
						
							| 107 | 23 32 | subcld |  |-  ( ph -> ( -u B - ( sqrt ` D ) ) e. CC ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ph /\ -. 0 <_ D ) -> ( -u B - ( sqrt ` D ) ) e. CC ) | 
						
							| 109 | 36 87 | resubcnnred |  |-  ( ( ph /\ -. 0 <_ D ) -> ( -u B - ( sqrt ` D ) ) e/ RR ) | 
						
							| 110 |  | df-nel |  |-  ( ( -u B - ( sqrt ` D ) ) e/ RR <-> -. ( -u B - ( sqrt ` D ) ) e. RR ) | 
						
							| 111 | 109 110 | sylib |  |-  ( ( ph /\ -. 0 <_ D ) -> -. ( -u B - ( sqrt ` D ) ) e. RR ) | 
						
							| 112 | 108 111 | eldifd |  |-  ( ( ph /\ -. 0 <_ D ) -> ( -u B - ( sqrt ` D ) ) e. ( CC \ RR ) ) | 
						
							| 113 | 22 112 96 | cndivrenred |  |-  ( ( ph /\ -. 0 <_ D ) -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e/ RR ) | 
						
							| 114 |  | df-nel |  |-  ( ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e/ RR <-> -. ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) | 
						
							| 115 | 113 114 | sylib |  |-  ( ( ph /\ -. 0 <_ D ) -> -. ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) | 
						
							| 116 | 115 | ex |  |-  ( ph -> ( -. 0 <_ D -> -. ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) | 
						
							| 117 | 116 | con4d |  |-  ( ph -> ( ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR -> 0 <_ D ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ph /\ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR -> 0 <_ D ) ) | 
						
							| 119 | 106 118 | sylbid |  |-  ( ( ph /\ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR -> 0 <_ D ) ) | 
						
							| 120 | 119 | ex |  |-  ( ph -> ( x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x e. RR -> 0 <_ D ) ) ) | 
						
							| 121 | 104 120 | jaod |  |-  ( ph -> ( ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR -> 0 <_ D ) ) ) | 
						
							| 122 | 121 | com23 |  |-  ( ph -> ( x e. RR -> ( ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> 0 <_ D ) ) ) | 
						
							| 123 | 122 | imp |  |-  ( ( ph /\ x e. RR ) -> ( ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> 0 <_ D ) ) | 
						
							| 124 | 16 123 | sylbid |  |-  ( ( ph /\ x e. RR ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> 0 <_ D ) ) | 
						
							| 125 | 124 | rexlimdva |  |-  ( ph -> ( E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> 0 <_ D ) ) | 
						
							| 126 | 35 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> -u B e. RR ) | 
						
							| 127 | 30 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> D e. RR ) | 
						
							| 128 |  | simpr |  |-  ( ( ph /\ 0 <_ D ) -> 0 <_ D ) | 
						
							| 129 | 127 128 | resqrtcld |  |-  ( ( ph /\ 0 <_ D ) -> ( sqrt ` D ) e. RR ) | 
						
							| 130 | 126 129 | readdcld |  |-  ( ( ph /\ 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e. RR ) | 
						
							| 131 | 19 | a1i |  |-  ( ( ph /\ 0 <_ D ) -> 2 e. RR ) | 
						
							| 132 | 1 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> A e. RR ) | 
						
							| 133 | 131 132 | remulcld |  |-  ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) e. RR ) | 
						
							| 134 | 95 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) =/= 0 ) | 
						
							| 135 | 130 133 134 | redivcld |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) | 
						
							| 136 |  | oveq1 |  |-  ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x ^ 2 ) = ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) | 
						
							| 137 | 136 | oveq2d |  |-  ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( A x. ( x ^ 2 ) ) = ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) ) | 
						
							| 138 |  | oveq2 |  |-  ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( B x. x ) = ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) | 
						
							| 139 | 138 | oveq1d |  |-  ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( ( B x. x ) + C ) = ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) | 
						
							| 140 | 137 139 | oveq12d |  |-  ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) ) | 
						
							| 141 | 140 | eqeq1d |  |-  ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) = 0 ) ) | 
						
							| 142 | 141 | adantl |  |-  ( ( ( ph /\ 0 <_ D ) /\ x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) = 0 ) ) | 
						
							| 143 |  | eqidd |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) | 
						
							| 144 | 143 | orcd |  |-  ( ( ph /\ 0 <_ D ) -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) | 
						
							| 145 | 6 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> A e. CC ) | 
						
							| 146 | 2 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> A =/= 0 ) | 
						
							| 147 | 9 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> B e. CC ) | 
						
							| 148 | 11 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> C e. CC ) | 
						
							| 149 | 92 6 | mulcld |  |-  ( ph -> ( 2 x. A ) e. CC ) | 
						
							| 150 | 33 149 95 | divcld |  |-  ( ph -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) | 
						
							| 151 | 150 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) | 
						
							| 152 | 5 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) | 
						
							| 153 | 145 146 147 148 151 152 | quad |  |-  ( ( ph /\ 0 <_ D ) -> ( ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) = 0 <-> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 154 | 144 153 | mpbird |  |-  ( ( ph /\ 0 <_ D ) -> ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) = 0 ) | 
						
							| 155 | 135 142 154 | rspcedvd |  |-  ( ( ph /\ 0 <_ D ) -> E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) | 
						
							| 156 | 155 | ex |  |-  ( ph -> ( 0 <_ D -> E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) | 
						
							| 157 | 125 156 | impbid |  |-  ( ph -> ( E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> 0 <_ D ) ) |