Step |
Hyp |
Ref |
Expression |
1 |
|
requad2.a |
|
2 |
|
requad2.z |
|
3 |
|
requad2.b |
|
4 |
|
requad2.c |
|
5 |
|
requad2.d |
|
6 |
1
|
recnd |
|
7 |
6
|
adantr |
|
8 |
2
|
adantr |
|
9 |
3
|
recnd |
|
10 |
9
|
adantr |
|
11 |
4
|
recnd |
|
12 |
11
|
adantr |
|
13 |
|
recn |
|
14 |
13
|
adantl |
|
15 |
5
|
adantr |
|
16 |
7 8 10 12 14 15
|
quad |
|
17 |
|
eleq1 |
|
18 |
17
|
adantl |
|
19 |
|
2re |
|
20 |
19
|
a1i |
|
21 |
20 1
|
remulcld |
|
22 |
21
|
adantr |
|
23 |
9
|
negcld |
|
24 |
3
|
resqcld |
|
25 |
|
4re |
|
26 |
25
|
a1i |
|
27 |
1 4
|
remulcld |
|
28 |
26 27
|
remulcld |
|
29 |
24 28
|
resubcld |
|
30 |
5 29
|
eqeltrd |
|
31 |
30
|
recnd |
|
32 |
31
|
sqrtcld |
|
33 |
23 32
|
addcld |
|
34 |
33
|
adantr |
|
35 |
3
|
renegcld |
|
36 |
35
|
adantr |
|
37 |
32
|
adantr |
|
38 |
31
|
negnegd |
|
39 |
38
|
adantr |
|
40 |
39
|
eqcomd |
|
41 |
40
|
fveq2d |
|
42 |
30
|
renegcld |
|
43 |
42
|
adantr |
|
44 |
|
0red |
|
45 |
30 44
|
ltnled |
|
46 |
|
ltle |
|
47 |
30 44 46
|
syl2anc |
|
48 |
45 47
|
sylbird |
|
49 |
48
|
imp |
|
50 |
30
|
le0neg1d |
|
51 |
50
|
adantr |
|
52 |
49 51
|
mpbid |
|
53 |
43 52
|
sqrtnegd |
|
54 |
41 53
|
eqtrd |
|
55 |
|
ax-icn |
|
56 |
55
|
a1i |
|
57 |
31
|
negcld |
|
58 |
57
|
sqrtcld |
|
59 |
58
|
adantr |
|
60 |
56 59
|
mulcomd |
|
61 |
43 52
|
resqrtcld |
|
62 |
|
inelr |
|
63 |
|
eldif |
|
64 |
55 62 63
|
mpbir2an |
|
65 |
64
|
a1i |
|
66 |
30
|
lt0neg1d |
|
67 |
|
ltne |
|
68 |
44 67
|
sylan |
|
69 |
42
|
adantr |
|
70 |
|
ltle |
|
71 |
44 42 70
|
syl2anc |
|
72 |
71
|
imp |
|
73 |
|
sqrt00 |
|
74 |
69 72 73
|
syl2anc |
|
75 |
74
|
bicomd |
|
76 |
75
|
necon3bid |
|
77 |
68 76
|
mpbid |
|
78 |
77
|
ex |
|
79 |
66 78
|
sylbid |
|
80 |
45 79
|
sylbird |
|
81 |
80
|
imp |
|
82 |
61 65 81
|
recnmulnred |
|
83 |
|
df-nel |
|
84 |
82 83
|
sylib |
|
85 |
60 84
|
eqneltrd |
|
86 |
54 85
|
eqneltrd |
|
87 |
37 86
|
eldifd |
|
88 |
36 87
|
readdcnnred |
|
89 |
|
df-nel |
|
90 |
88 89
|
sylib |
|
91 |
34 90
|
eldifd |
|
92 |
|
2cnd |
|
93 |
|
2ne0 |
|
94 |
93
|
a1i |
|
95 |
92 6 94 2
|
mulne0d |
|
96 |
95
|
adantr |
|
97 |
22 91 96
|
cndivrenred |
|
98 |
|
df-nel |
|
99 |
97 98
|
sylib |
|
100 |
99
|
ex |
|
101 |
100
|
con4d |
|
102 |
101
|
adantr |
|
103 |
18 102
|
sylbid |
|
104 |
103
|
ex |
|
105 |
|
eleq1 |
|
106 |
105
|
adantl |
|
107 |
23 32
|
subcld |
|
108 |
107
|
adantr |
|
109 |
36 87
|
resubcnnred |
|
110 |
|
df-nel |
|
111 |
109 110
|
sylib |
|
112 |
108 111
|
eldifd |
|
113 |
22 112 96
|
cndivrenred |
|
114 |
|
df-nel |
|
115 |
113 114
|
sylib |
|
116 |
115
|
ex |
|
117 |
116
|
con4d |
|
118 |
117
|
adantr |
|
119 |
106 118
|
sylbid |
|
120 |
119
|
ex |
|
121 |
104 120
|
jaod |
|
122 |
121
|
com23 |
|
123 |
122
|
imp |
|
124 |
16 123
|
sylbid |
|
125 |
124
|
rexlimdva |
|
126 |
35
|
adantr |
|
127 |
30
|
adantr |
|
128 |
|
simpr |
|
129 |
127 128
|
resqrtcld |
|
130 |
126 129
|
readdcld |
|
131 |
19
|
a1i |
|
132 |
1
|
adantr |
|
133 |
131 132
|
remulcld |
|
134 |
95
|
adantr |
|
135 |
130 133 134
|
redivcld |
|
136 |
|
oveq1 |
|
137 |
136
|
oveq2d |
|
138 |
|
oveq2 |
|
139 |
138
|
oveq1d |
|
140 |
137 139
|
oveq12d |
|
141 |
140
|
eqeq1d |
|
142 |
141
|
adantl |
|
143 |
|
eqidd |
|
144 |
143
|
orcd |
|
145 |
6
|
adantr |
|
146 |
2
|
adantr |
|
147 |
9
|
adantr |
|
148 |
11
|
adantr |
|
149 |
92 6
|
mulcld |
|
150 |
33 149 95
|
divcld |
|
151 |
150
|
adantr |
|
152 |
5
|
adantr |
|
153 |
145 146 147 148 151 152
|
quad |
|
154 |
144 153
|
mpbird |
|
155 |
135 142 154
|
rspcedvd |
|
156 |
155
|
ex |
|
157 |
125 156
|
impbid |
|