Metamath Proof Explorer


Theorem requad1

Description: A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023)

Ref Expression
Hypotheses requad2.a φ A
requad2.z φ A 0
requad2.b φ B
requad2.c φ C
requad2.d φ D = B 2 4 A C
Assertion requad1 φ ∃! x A x 2 + B x + C = 0 D = 0

Proof

Step Hyp Ref Expression
1 requad2.a φ A
2 requad2.z φ A 0
3 requad2.b φ B
4 requad2.c φ C
5 requad2.d φ D = B 2 4 A C
6 1 recnd φ A
7 6 ad2antrr φ 0 D x A
8 2 ad2antrr φ 0 D x A 0
9 3 recnd φ B
10 9 ad2antrr φ 0 D x B
11 4 recnd φ C
12 11 ad2antrr φ 0 D x C
13 recn x x
14 13 adantl φ 0 D x x
15 5 ad2antrr φ 0 D x D = B 2 4 A C
16 7 8 10 12 14 15 quad φ 0 D x A x 2 + B x + C = 0 x = - B + D 2 A x = - B - D 2 A
17 16 reubidva φ 0 D ∃! x A x 2 + B x + C = 0 ∃! x x = - B + D 2 A x = - B - D 2 A
18 3 renegcld φ B
19 18 adantr φ 0 D B
20 3 resqcld φ B 2
21 4re 4
22 21 a1i φ 4
23 1 4 remulcld φ A C
24 22 23 remulcld φ 4 A C
25 20 24 resubcld φ B 2 4 A C
26 5 25 eqeltrd φ D
27 resqrtcl D 0 D D
28 26 27 sylan φ 0 D D
29 19 28 readdcld φ 0 D - B + D
30 2re 2
31 30 a1i φ 2
32 31 1 remulcld φ 2 A
33 32 adantr φ 0 D 2 A
34 2cnd φ 2
35 2ne0 2 0
36 35 a1i φ 2 0
37 34 6 36 2 mulne0d φ 2 A 0
38 37 adantr φ 0 D 2 A 0
39 29 33 38 redivcld φ 0 D - B + D 2 A
40 19 28 resubcld φ 0 D - B - D
41 40 33 38 redivcld φ 0 D - B - D 2 A
42 euoreqb - B + D 2 A - B - D 2 A ∃! x x = - B + D 2 A x = - B - D 2 A - B + D 2 A = - B - D 2 A
43 39 41 42 syl2anc φ 0 D ∃! x x = - B + D 2 A x = - B - D 2 A - B + D 2 A = - B - D 2 A
44 9 negcld φ B
45 26 recnd φ D
46 45 sqrtcld φ D
47 32 recnd φ 2 A
48 44 46 47 37 divdird φ - B + D 2 A = B 2 A + D 2 A
49 48 adantr φ 0 D - B + D 2 A = B 2 A + D 2 A
50 44 46 47 37 divsubdird φ - B - D 2 A = B 2 A D 2 A
51 50 adantr φ 0 D - B - D 2 A = B 2 A D 2 A
52 44 47 37 divcld φ B 2 A
53 52 adantr φ 0 D B 2 A
54 46 47 37 divcld φ D 2 A
55 54 adantr φ 0 D D 2 A
56 53 55 negsubd φ 0 D B 2 A + D 2 A = B 2 A D 2 A
57 46 adantr φ 0 D D
58 47 adantr φ 0 D 2 A
59 57 58 38 divnegd φ 0 D D 2 A = D 2 A
60 59 oveq2d φ 0 D B 2 A + D 2 A = B 2 A + D 2 A
61 51 56 60 3eqtr2d φ 0 D - B - D 2 A = B 2 A + D 2 A
62 49 61 eqeq12d φ 0 D - B + D 2 A = - B - D 2 A B 2 A + D 2 A = B 2 A + D 2 A
63 46 negcld φ D
64 63 47 37 divcld φ D 2 A
65 64 adantr φ 0 D D 2 A
66 53 55 65 addcand φ 0 D B 2 A + D 2 A = B 2 A + D 2 A D 2 A = D 2 A
67 div11 D D 2 A 2 A 0 D 2 A = D 2 A D = D
68 46 63 47 37 67 syl112anc φ D 2 A = D 2 A D = D
69 68 adantr φ 0 D D 2 A = D 2 A D = D
70 57 eqnegd φ 0 D D = D D = 0
71 sqrt00 D 0 D D = 0 D = 0
72 26 71 sylan φ 0 D D = 0 D = 0
73 70 72 bitrd φ 0 D D = D D = 0
74 66 69 73 3bitrd φ 0 D B 2 A + D 2 A = B 2 A + D 2 A D = 0
75 62 74 bitrd φ 0 D - B + D 2 A = - B - D 2 A D = 0
76 17 43 75 3bitrd φ 0 D ∃! x A x 2 + B x + C = 0 D = 0
77 76 expcom 0 D φ ∃! x A x 2 + B x + C = 0 D = 0
78 1 2 3 4 5 requad01 φ x A x 2 + B x + C = 0 0 D
79 78 notbid φ ¬ x A x 2 + B x + C = 0 ¬ 0 D
80 79 biimparc ¬ 0 D φ ¬ x A x 2 + B x + C = 0
81 reurex ∃! x A x 2 + B x + C = 0 x A x 2 + B x + C = 0
82 80 81 nsyl ¬ 0 D φ ¬ ∃! x A x 2 + B x + C = 0
83 82 pm2.21d ¬ 0 D φ ∃! x A x 2 + B x + C = 0 D = 0
84 0red φ 0
85 26 84 ltnled φ D < 0 ¬ 0 D
86 85 biimparc ¬ 0 D φ D < 0
87 86 lt0ne0d ¬ 0 D φ D 0
88 eqneqall D = 0 D 0 ∃! x A x 2 + B x + C = 0
89 87 88 syl5com ¬ 0 D φ D = 0 ∃! x A x 2 + B x + C = 0
90 83 89 impbid ¬ 0 D φ ∃! x A x 2 + B x + C = 0 D = 0
91 90 ex ¬ 0 D φ ∃! x A x 2 + B x + C = 0 D = 0
92 77 91 pm2.61i φ ∃! x A x 2 + B x + C = 0 D = 0