| Step |
Hyp |
Ref |
Expression |
| 1 |
|
requad2.a |
|
| 2 |
|
requad2.z |
|
| 3 |
|
requad2.b |
|
| 4 |
|
requad2.c |
|
| 5 |
|
requad2.d |
|
| 6 |
1
|
recnd |
|
| 7 |
6
|
ad3antrrr |
|
| 8 |
2
|
ad3antrrr |
|
| 9 |
3
|
recnd |
|
| 10 |
9
|
ad3antrrr |
|
| 11 |
4
|
recnd |
|
| 12 |
11
|
ad3antrrr |
|
| 13 |
|
elelpwi |
|
| 14 |
13
|
expcom |
|
| 15 |
14
|
adantl |
|
| 16 |
15
|
imp |
|
| 17 |
16
|
recnd |
|
| 18 |
5
|
ad3antrrr |
|
| 19 |
7 8 10 12 17 18
|
quad |
|
| 20 |
19
|
ralbidva |
|
| 21 |
20
|
anbi2d |
|
| 22 |
21
|
reubidva |
|
| 23 |
|
eqid |
|
| 24 |
23
|
pairreueq |
|
| 25 |
24
|
bicomi |
|
| 26 |
25
|
a1i |
|
| 27 |
3
|
renegcld |
|
| 28 |
27
|
adantr |
|
| 29 |
3
|
resqcld |
|
| 30 |
|
4re |
|
| 31 |
30
|
a1i |
|
| 32 |
1 4
|
remulcld |
|
| 33 |
31 32
|
remulcld |
|
| 34 |
29 33
|
resubcld |
|
| 35 |
5 34
|
eqeltrd |
|
| 36 |
35
|
adantr |
|
| 37 |
|
simpr |
|
| 38 |
36 37
|
resqrtcld |
|
| 39 |
28 38
|
readdcld |
|
| 40 |
|
2re |
|
| 41 |
40
|
a1i |
|
| 42 |
41 1
|
remulcld |
|
| 43 |
42
|
adantr |
|
| 44 |
|
2cnne0 |
|
| 45 |
44
|
a1i |
|
| 46 |
|
mulne0 |
|
| 47 |
45 6 2 46
|
syl12anc |
|
| 48 |
47
|
adantr |
|
| 49 |
39 43 48
|
redivcld |
|
| 50 |
3
|
adantr |
|
| 51 |
50
|
renegcld |
|
| 52 |
51 38
|
resubcld |
|
| 53 |
40
|
a1i |
|
| 54 |
1
|
adantr |
|
| 55 |
53 54
|
remulcld |
|
| 56 |
52 55 48
|
redivcld |
|
| 57 |
|
fveqeq2 |
|
| 58 |
57
|
cbvrabv |
|
| 59 |
49 56 58
|
paireqne |
|
| 60 |
9
|
negcld |
|
| 61 |
35
|
recnd |
|
| 62 |
61
|
sqrtcld |
|
| 63 |
60 62
|
addcld |
|
| 64 |
60 62
|
subcld |
|
| 65 |
|
2cnd |
|
| 66 |
65 6
|
mulcld |
|
| 67 |
|
div11 |
|
| 68 |
63 64 66 47 67
|
syl112anc |
|
| 69 |
60 62
|
negsubd |
|
| 70 |
69
|
eqcomd |
|
| 71 |
70
|
eqeq2d |
|
| 72 |
62
|
negcld |
|
| 73 |
60 62 72
|
addcand |
|
| 74 |
68 71 73
|
3bitrd |
|
| 75 |
74
|
necon3bid |
|
| 76 |
75
|
adantr |
|
| 77 |
|
cnsqrt00 |
|
| 78 |
61 77
|
syl |
|
| 79 |
78
|
necon3bid |
|
| 80 |
79
|
adantr |
|
| 81 |
62
|
eqnegd |
|
| 82 |
81
|
adantr |
|
| 83 |
82
|
necon3bid |
|
| 84 |
|
0red |
|
| 85 |
84 36 37
|
leltned |
|
| 86 |
80 83 85
|
3bitr4d |
|
| 87 |
76 86
|
bitrd |
|
| 88 |
26 59 87
|
3bitrd |
|
| 89 |
22 88
|
bitrd |
|
| 90 |
89
|
expcom |
|
| 91 |
|
hash2prb |
|
| 92 |
91
|
adantl |
|
| 93 |
|
raleq |
|
| 94 |
|
vex |
|
| 95 |
|
vex |
|
| 96 |
|
oveq1 |
|
| 97 |
96
|
oveq2d |
|
| 98 |
|
oveq2 |
|
| 99 |
98
|
oveq1d |
|
| 100 |
97 99
|
oveq12d |
|
| 101 |
100
|
eqeq1d |
|
| 102 |
|
oveq1 |
|
| 103 |
102
|
oveq2d |
|
| 104 |
|
oveq2 |
|
| 105 |
104
|
oveq1d |
|
| 106 |
103 105
|
oveq12d |
|
| 107 |
106
|
eqeq1d |
|
| 108 |
94 95 101 107
|
ralpr |
|
| 109 |
93 108
|
bitrdi |
|
| 110 |
109
|
adantl |
|
| 111 |
110
|
adantl |
|
| 112 |
|
elelpwi |
|
| 113 |
112
|
ex |
|
| 114 |
113
|
adantl |
|
| 115 |
114
|
com12 |
|
| 116 |
115
|
adantl |
|
| 117 |
116
|
imp |
|
| 118 |
|
oveq1 |
|
| 119 |
118
|
oveq2d |
|
| 120 |
|
oveq2 |
|
| 121 |
120
|
oveq1d |
|
| 122 |
119 121
|
oveq12d |
|
| 123 |
122
|
eqeq1d |
|
| 124 |
123
|
adantl |
|
| 125 |
117 124
|
rspcedv |
|
| 126 |
125
|
adantr |
|
| 127 |
126
|
adantld |
|
| 128 |
111 127
|
sylbid |
|
| 129 |
128
|
ex |
|
| 130 |
129
|
rexlimdvva |
|
| 131 |
92 130
|
sylbid |
|
| 132 |
131
|
impd |
|
| 133 |
132
|
rexlimdva |
|
| 134 |
1 2 3 4 5
|
requad01 |
|
| 135 |
133 134
|
sylibd |
|
| 136 |
135
|
con3d |
|
| 137 |
136
|
impcom |
|
| 138 |
|
reurex |
|
| 139 |
137 138
|
nsyl |
|
| 140 |
139
|
pm2.21d |
|
| 141 |
|
0red |
|
| 142 |
|
ltle |
|
| 143 |
141 35 142
|
syl2anc |
|
| 144 |
|
pm2.24 |
|
| 145 |
143 144
|
syl6 |
|
| 146 |
145
|
com23 |
|
| 147 |
146
|
impcom |
|
| 148 |
140 147
|
impbid |
|
| 149 |
148
|
ex |
|
| 150 |
90 149
|
pm2.61i |
|