Step |
Hyp |
Ref |
Expression |
1 |
|
requad2.a |
|
2 |
|
requad2.z |
|
3 |
|
requad2.b |
|
4 |
|
requad2.c |
|
5 |
|
requad2.d |
|
6 |
1
|
recnd |
|
7 |
6
|
ad3antrrr |
|
8 |
2
|
ad3antrrr |
|
9 |
3
|
recnd |
|
10 |
9
|
ad3antrrr |
|
11 |
4
|
recnd |
|
12 |
11
|
ad3antrrr |
|
13 |
|
elelpwi |
|
14 |
13
|
expcom |
|
15 |
14
|
adantl |
|
16 |
15
|
imp |
|
17 |
16
|
recnd |
|
18 |
5
|
ad3antrrr |
|
19 |
7 8 10 12 17 18
|
quad |
|
20 |
19
|
ralbidva |
|
21 |
20
|
anbi2d |
|
22 |
21
|
reubidva |
|
23 |
|
eqid |
|
24 |
23
|
pairreueq |
|
25 |
24
|
bicomi |
|
26 |
25
|
a1i |
|
27 |
3
|
renegcld |
|
28 |
27
|
adantr |
|
29 |
3
|
resqcld |
|
30 |
|
4re |
|
31 |
30
|
a1i |
|
32 |
1 4
|
remulcld |
|
33 |
31 32
|
remulcld |
|
34 |
29 33
|
resubcld |
|
35 |
5 34
|
eqeltrd |
|
36 |
35
|
adantr |
|
37 |
|
simpr |
|
38 |
36 37
|
resqrtcld |
|
39 |
28 38
|
readdcld |
|
40 |
|
2re |
|
41 |
40
|
a1i |
|
42 |
41 1
|
remulcld |
|
43 |
42
|
adantr |
|
44 |
|
2cnne0 |
|
45 |
44
|
a1i |
|
46 |
|
mulne0 |
|
47 |
45 6 2 46
|
syl12anc |
|
48 |
47
|
adantr |
|
49 |
39 43 48
|
redivcld |
|
50 |
3
|
adantr |
|
51 |
50
|
renegcld |
|
52 |
51 38
|
resubcld |
|
53 |
40
|
a1i |
|
54 |
1
|
adantr |
|
55 |
53 54
|
remulcld |
|
56 |
52 55 48
|
redivcld |
|
57 |
|
fveqeq2 |
|
58 |
57
|
cbvrabv |
|
59 |
49 56 58
|
paireqne |
|
60 |
9
|
negcld |
|
61 |
35
|
recnd |
|
62 |
61
|
sqrtcld |
|
63 |
60 62
|
addcld |
|
64 |
60 62
|
subcld |
|
65 |
|
2cnd |
|
66 |
65 6
|
mulcld |
|
67 |
|
div11 |
|
68 |
63 64 66 47 67
|
syl112anc |
|
69 |
60 62
|
negsubd |
|
70 |
69
|
eqcomd |
|
71 |
70
|
eqeq2d |
|
72 |
62
|
negcld |
|
73 |
60 62 72
|
addcand |
|
74 |
68 71 73
|
3bitrd |
|
75 |
74
|
necon3bid |
|
76 |
75
|
adantr |
|
77 |
|
cnsqrt00 |
|
78 |
61 77
|
syl |
|
79 |
78
|
necon3bid |
|
80 |
79
|
adantr |
|
81 |
62
|
eqnegd |
|
82 |
81
|
adantr |
|
83 |
82
|
necon3bid |
|
84 |
|
0red |
|
85 |
84 36 37
|
leltned |
|
86 |
80 83 85
|
3bitr4d |
|
87 |
76 86
|
bitrd |
|
88 |
26 59 87
|
3bitrd |
|
89 |
22 88
|
bitrd |
|
90 |
89
|
expcom |
|
91 |
|
hash2prb |
|
92 |
91
|
adantl |
|
93 |
|
raleq |
|
94 |
|
vex |
|
95 |
|
vex |
|
96 |
|
oveq1 |
|
97 |
96
|
oveq2d |
|
98 |
|
oveq2 |
|
99 |
98
|
oveq1d |
|
100 |
97 99
|
oveq12d |
|
101 |
100
|
eqeq1d |
|
102 |
|
oveq1 |
|
103 |
102
|
oveq2d |
|
104 |
|
oveq2 |
|
105 |
104
|
oveq1d |
|
106 |
103 105
|
oveq12d |
|
107 |
106
|
eqeq1d |
|
108 |
94 95 101 107
|
ralpr |
|
109 |
93 108
|
bitrdi |
|
110 |
109
|
adantl |
|
111 |
110
|
adantl |
|
112 |
|
elelpwi |
|
113 |
112
|
ex |
|
114 |
113
|
adantl |
|
115 |
114
|
com12 |
|
116 |
115
|
adantl |
|
117 |
116
|
imp |
|
118 |
|
oveq1 |
|
119 |
118
|
oveq2d |
|
120 |
|
oveq2 |
|
121 |
120
|
oveq1d |
|
122 |
119 121
|
oveq12d |
|
123 |
122
|
eqeq1d |
|
124 |
123
|
adantl |
|
125 |
117 124
|
rspcedv |
|
126 |
125
|
adantr |
|
127 |
126
|
adantld |
|
128 |
111 127
|
sylbid |
|
129 |
128
|
ex |
|
130 |
129
|
rexlimdvva |
|
131 |
92 130
|
sylbid |
|
132 |
131
|
impd |
|
133 |
132
|
rexlimdva |
|
134 |
1 2 3 4 5
|
requad01 |
|
135 |
133 134
|
sylibd |
|
136 |
135
|
con3d |
|
137 |
136
|
impcom |
|
138 |
|
reurex |
|
139 |
137 138
|
nsyl |
|
140 |
139
|
pm2.21d |
|
141 |
|
0red |
|
142 |
|
ltle |
|
143 |
141 35 142
|
syl2anc |
|
144 |
|
pm2.24 |
|
145 |
143 144
|
syl6 |
|
146 |
145
|
com23 |
|
147 |
146
|
impcom |
|
148 |
140 147
|
impbid |
|
149 |
148
|
ex |
|
150 |
90 149
|
pm2.61i |
|