| Step | Hyp | Ref | Expression | 
						
							| 1 |  | requad2.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | requad2.z |  |-  ( ph -> A =/= 0 ) | 
						
							| 3 |  | requad2.b |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | requad2.c |  |-  ( ph -> C e. RR ) | 
						
							| 5 |  | requad2.d |  |-  ( ph -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) | 
						
							| 6 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 7 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) /\ x e. p ) -> A e. CC ) | 
						
							| 8 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) /\ x e. p ) -> A =/= 0 ) | 
						
							| 9 | 3 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 10 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) /\ x e. p ) -> B e. CC ) | 
						
							| 11 | 4 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 12 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) /\ x e. p ) -> C e. CC ) | 
						
							| 13 |  | elelpwi |  |-  ( ( x e. p /\ p e. ~P RR ) -> x e. RR ) | 
						
							| 14 | 13 | expcom |  |-  ( p e. ~P RR -> ( x e. p -> x e. RR ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) -> ( x e. p -> x e. RR ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) /\ x e. p ) -> x e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) /\ x e. p ) -> x e. CC ) | 
						
							| 18 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) /\ x e. p ) -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) | 
						
							| 19 | 7 8 10 12 17 18 | quad |  |-  ( ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) /\ x e. p ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 20 | 19 | ralbidva |  |-  ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) -> ( A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 21 | 20 | anbi2d |  |-  ( ( ( ph /\ 0 <_ D ) /\ p e. ~P RR ) -> ( ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) <-> ( ( # ` p ) = 2 /\ A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) ) | 
						
							| 22 | 21 | reubidva |  |-  ( ( ph /\ 0 <_ D ) -> ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) <-> E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) ) | 
						
							| 23 |  | eqid |  |-  { q e. ~P RR | ( # ` q ) = 2 } = { q e. ~P RR | ( # ` q ) = 2 } | 
						
							| 24 | 23 | pairreueq |  |-  ( E! p e. { q e. ~P RR | ( # ` q ) = 2 } A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) <-> E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 25 | 24 | bicomi |  |-  ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) <-> E! p e. { q e. ~P RR | ( # ` q ) = 2 } A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) | 
						
							| 26 | 25 | a1i |  |-  ( ( ph /\ 0 <_ D ) -> ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) <-> E! p e. { q e. ~P RR | ( # ` q ) = 2 } A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 27 | 3 | renegcld |  |-  ( ph -> -u B e. RR ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> -u B e. RR ) | 
						
							| 29 | 3 | resqcld |  |-  ( ph -> ( B ^ 2 ) e. RR ) | 
						
							| 30 |  | 4re |  |-  4 e. RR | 
						
							| 31 | 30 | a1i |  |-  ( ph -> 4 e. RR ) | 
						
							| 32 | 1 4 | remulcld |  |-  ( ph -> ( A x. C ) e. RR ) | 
						
							| 33 | 31 32 | remulcld |  |-  ( ph -> ( 4 x. ( A x. C ) ) e. RR ) | 
						
							| 34 | 29 33 | resubcld |  |-  ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. RR ) | 
						
							| 35 | 5 34 | eqeltrd |  |-  ( ph -> D e. RR ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> D e. RR ) | 
						
							| 37 |  | simpr |  |-  ( ( ph /\ 0 <_ D ) -> 0 <_ D ) | 
						
							| 38 | 36 37 | resqrtcld |  |-  ( ( ph /\ 0 <_ D ) -> ( sqrt ` D ) e. RR ) | 
						
							| 39 | 28 38 | readdcld |  |-  ( ( ph /\ 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e. RR ) | 
						
							| 40 |  | 2re |  |-  2 e. RR | 
						
							| 41 | 40 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 42 | 41 1 | remulcld |  |-  ( ph -> ( 2 x. A ) e. RR ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) e. RR ) | 
						
							| 44 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 45 | 44 | a1i |  |-  ( ph -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 46 |  | mulne0 |  |-  ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( 2 x. A ) =/= 0 ) | 
						
							| 47 | 45 6 2 46 | syl12anc |  |-  ( ph -> ( 2 x. A ) =/= 0 ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) =/= 0 ) | 
						
							| 49 | 39 43 48 | redivcld |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) | 
						
							| 50 | 3 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> B e. RR ) | 
						
							| 51 | 50 | renegcld |  |-  ( ( ph /\ 0 <_ D ) -> -u B e. RR ) | 
						
							| 52 | 51 38 | resubcld |  |-  ( ( ph /\ 0 <_ D ) -> ( -u B - ( sqrt ` D ) ) e. RR ) | 
						
							| 53 | 40 | a1i |  |-  ( ( ph /\ 0 <_ D ) -> 2 e. RR ) | 
						
							| 54 | 1 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> A e. RR ) | 
						
							| 55 | 53 54 | remulcld |  |-  ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) e. RR ) | 
						
							| 56 | 52 55 48 | redivcld |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) | 
						
							| 57 |  | fveqeq2 |  |-  ( q = x -> ( ( # ` q ) = 2 <-> ( # ` x ) = 2 ) ) | 
						
							| 58 | 57 | cbvrabv |  |-  { q e. ~P RR | ( # ` q ) = 2 } = { x e. ~P RR | ( # ` x ) = 2 } | 
						
							| 59 | 49 56 58 | paireqne |  |-  ( ( ph /\ 0 <_ D ) -> ( E! p e. { q e. ~P RR | ( # ` q ) = 2 } A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) =/= ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) | 
						
							| 60 | 9 | negcld |  |-  ( ph -> -u B e. CC ) | 
						
							| 61 | 35 | recnd |  |-  ( ph -> D e. CC ) | 
						
							| 62 | 61 | sqrtcld |  |-  ( ph -> ( sqrt ` D ) e. CC ) | 
						
							| 63 | 60 62 | addcld |  |-  ( ph -> ( -u B + ( sqrt ` D ) ) e. CC ) | 
						
							| 64 | 60 62 | subcld |  |-  ( ph -> ( -u B - ( sqrt ` D ) ) e. CC ) | 
						
							| 65 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 66 | 65 6 | mulcld |  |-  ( ph -> ( 2 x. A ) e. CC ) | 
						
							| 67 |  | div11 |  |-  ( ( ( -u B + ( sqrt ` D ) ) e. CC /\ ( -u B - ( sqrt ` D ) ) e. CC /\ ( ( 2 x. A ) e. CC /\ ( 2 x. A ) =/= 0 ) ) -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> ( -u B + ( sqrt ` D ) ) = ( -u B - ( sqrt ` D ) ) ) ) | 
						
							| 68 | 63 64 66 47 67 | syl112anc |  |-  ( ph -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> ( -u B + ( sqrt ` D ) ) = ( -u B - ( sqrt ` D ) ) ) ) | 
						
							| 69 | 60 62 | negsubd |  |-  ( ph -> ( -u B + -u ( sqrt ` D ) ) = ( -u B - ( sqrt ` D ) ) ) | 
						
							| 70 | 69 | eqcomd |  |-  ( ph -> ( -u B - ( sqrt ` D ) ) = ( -u B + -u ( sqrt ` D ) ) ) | 
						
							| 71 | 70 | eqeq2d |  |-  ( ph -> ( ( -u B + ( sqrt ` D ) ) = ( -u B - ( sqrt ` D ) ) <-> ( -u B + ( sqrt ` D ) ) = ( -u B + -u ( sqrt ` D ) ) ) ) | 
						
							| 72 | 62 | negcld |  |-  ( ph -> -u ( sqrt ` D ) e. CC ) | 
						
							| 73 | 60 62 72 | addcand |  |-  ( ph -> ( ( -u B + ( sqrt ` D ) ) = ( -u B + -u ( sqrt ` D ) ) <-> ( sqrt ` D ) = -u ( sqrt ` D ) ) ) | 
						
							| 74 | 68 71 73 | 3bitrd |  |-  ( ph -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> ( sqrt ` D ) = -u ( sqrt ` D ) ) ) | 
						
							| 75 | 74 | necon3bid |  |-  ( ph -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) =/= ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> ( sqrt ` D ) =/= -u ( sqrt ` D ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) =/= ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> ( sqrt ` D ) =/= -u ( sqrt ` D ) ) ) | 
						
							| 77 |  | cnsqrt00 |  |-  ( D e. CC -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) | 
						
							| 78 | 61 77 | syl |  |-  ( ph -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) | 
						
							| 79 | 78 | necon3bid |  |-  ( ph -> ( ( sqrt ` D ) =/= 0 <-> D =/= 0 ) ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( ( sqrt ` D ) =/= 0 <-> D =/= 0 ) ) | 
						
							| 81 | 62 | eqnegd |  |-  ( ph -> ( ( sqrt ` D ) = -u ( sqrt ` D ) <-> ( sqrt ` D ) = 0 ) ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( ( sqrt ` D ) = -u ( sqrt ` D ) <-> ( sqrt ` D ) = 0 ) ) | 
						
							| 83 | 82 | necon3bid |  |-  ( ( ph /\ 0 <_ D ) -> ( ( sqrt ` D ) =/= -u ( sqrt ` D ) <-> ( sqrt ` D ) =/= 0 ) ) | 
						
							| 84 |  | 0red |  |-  ( ( ph /\ 0 <_ D ) -> 0 e. RR ) | 
						
							| 85 | 84 36 37 | leltned |  |-  ( ( ph /\ 0 <_ D ) -> ( 0 < D <-> D =/= 0 ) ) | 
						
							| 86 | 80 83 85 | 3bitr4d |  |-  ( ( ph /\ 0 <_ D ) -> ( ( sqrt ` D ) =/= -u ( sqrt ` D ) <-> 0 < D ) ) | 
						
							| 87 | 76 86 | bitrd |  |-  ( ( ph /\ 0 <_ D ) -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) =/= ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> 0 < D ) ) | 
						
							| 88 | 26 59 87 | 3bitrd |  |-  ( ( ph /\ 0 <_ D ) -> ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) <-> 0 < D ) ) | 
						
							| 89 | 22 88 | bitrd |  |-  ( ( ph /\ 0 <_ D ) -> ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) <-> 0 < D ) ) | 
						
							| 90 | 89 | expcom |  |-  ( 0 <_ D -> ( ph -> ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) <-> 0 < D ) ) ) | 
						
							| 91 |  | hash2prb |  |-  ( p e. ~P RR -> ( ( # ` p ) = 2 <-> E. a e. p E. b e. p ( a =/= b /\ p = { a , b } ) ) ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ph /\ p e. ~P RR ) -> ( ( # ` p ) = 2 <-> E. a e. p E. b e. p ( a =/= b /\ p = { a , b } ) ) ) | 
						
							| 93 |  | raleq |  |-  ( p = { a , b } -> ( A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> A. x e. { a , b } ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) | 
						
							| 94 |  | vex |  |-  a e. _V | 
						
							| 95 |  | vex |  |-  b e. _V | 
						
							| 96 |  | oveq1 |  |-  ( x = a -> ( x ^ 2 ) = ( a ^ 2 ) ) | 
						
							| 97 | 96 | oveq2d |  |-  ( x = a -> ( A x. ( x ^ 2 ) ) = ( A x. ( a ^ 2 ) ) ) | 
						
							| 98 |  | oveq2 |  |-  ( x = a -> ( B x. x ) = ( B x. a ) ) | 
						
							| 99 | 98 | oveq1d |  |-  ( x = a -> ( ( B x. x ) + C ) = ( ( B x. a ) + C ) ) | 
						
							| 100 | 97 99 | oveq12d |  |-  ( x = a -> ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = ( ( A x. ( a ^ 2 ) ) + ( ( B x. a ) + C ) ) ) | 
						
							| 101 | 100 | eqeq1d |  |-  ( x = a -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( A x. ( a ^ 2 ) ) + ( ( B x. a ) + C ) ) = 0 ) ) | 
						
							| 102 |  | oveq1 |  |-  ( x = b -> ( x ^ 2 ) = ( b ^ 2 ) ) | 
						
							| 103 | 102 | oveq2d |  |-  ( x = b -> ( A x. ( x ^ 2 ) ) = ( A x. ( b ^ 2 ) ) ) | 
						
							| 104 |  | oveq2 |  |-  ( x = b -> ( B x. x ) = ( B x. b ) ) | 
						
							| 105 | 104 | oveq1d |  |-  ( x = b -> ( ( B x. x ) + C ) = ( ( B x. b ) + C ) ) | 
						
							| 106 | 103 105 | oveq12d |  |-  ( x = b -> ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) ) | 
						
							| 107 | 106 | eqeq1d |  |-  ( x = b -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 ) ) | 
						
							| 108 | 94 95 101 107 | ralpr |  |-  ( A. x e. { a , b } ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( ( A x. ( a ^ 2 ) ) + ( ( B x. a ) + C ) ) = 0 /\ ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 ) ) | 
						
							| 109 | 93 108 | bitrdi |  |-  ( p = { a , b } -> ( A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( ( A x. ( a ^ 2 ) ) + ( ( B x. a ) + C ) ) = 0 /\ ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 ) ) ) | 
						
							| 110 | 109 | adantl |  |-  ( ( a =/= b /\ p = { a , b } ) -> ( A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( ( A x. ( a ^ 2 ) ) + ( ( B x. a ) + C ) ) = 0 /\ ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 ) ) ) | 
						
							| 111 | 110 | adantl |  |-  ( ( ( ( ph /\ p e. ~P RR ) /\ ( a e. p /\ b e. p ) ) /\ ( a =/= b /\ p = { a , b } ) ) -> ( A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( ( A x. ( a ^ 2 ) ) + ( ( B x. a ) + C ) ) = 0 /\ ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 ) ) ) | 
						
							| 112 |  | elelpwi |  |-  ( ( b e. p /\ p e. ~P RR ) -> b e. RR ) | 
						
							| 113 | 112 | ex |  |-  ( b e. p -> ( p e. ~P RR -> b e. RR ) ) | 
						
							| 114 | 113 | adantl |  |-  ( ( a e. p /\ b e. p ) -> ( p e. ~P RR -> b e. RR ) ) | 
						
							| 115 | 114 | com12 |  |-  ( p e. ~P RR -> ( ( a e. p /\ b e. p ) -> b e. RR ) ) | 
						
							| 116 | 115 | adantl |  |-  ( ( ph /\ p e. ~P RR ) -> ( ( a e. p /\ b e. p ) -> b e. RR ) ) | 
						
							| 117 | 116 | imp |  |-  ( ( ( ph /\ p e. ~P RR ) /\ ( a e. p /\ b e. p ) ) -> b e. RR ) | 
						
							| 118 |  | oveq1 |  |-  ( y = b -> ( y ^ 2 ) = ( b ^ 2 ) ) | 
						
							| 119 | 118 | oveq2d |  |-  ( y = b -> ( A x. ( y ^ 2 ) ) = ( A x. ( b ^ 2 ) ) ) | 
						
							| 120 |  | oveq2 |  |-  ( y = b -> ( B x. y ) = ( B x. b ) ) | 
						
							| 121 | 120 | oveq1d |  |-  ( y = b -> ( ( B x. y ) + C ) = ( ( B x. b ) + C ) ) | 
						
							| 122 | 119 121 | oveq12d |  |-  ( y = b -> ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) ) | 
						
							| 123 | 122 | eqeq1d |  |-  ( y = b -> ( ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 <-> ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 ) ) | 
						
							| 124 | 123 | adantl |  |-  ( ( ( ( ph /\ p e. ~P RR ) /\ ( a e. p /\ b e. p ) ) /\ y = b ) -> ( ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 <-> ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 ) ) | 
						
							| 125 | 117 124 | rspcedv |  |-  ( ( ( ph /\ p e. ~P RR ) /\ ( a e. p /\ b e. p ) ) -> ( ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 -> E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 ) ) | 
						
							| 126 | 125 | adantr |  |-  ( ( ( ( ph /\ p e. ~P RR ) /\ ( a e. p /\ b e. p ) ) /\ ( a =/= b /\ p = { a , b } ) ) -> ( ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 -> E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 ) ) | 
						
							| 127 | 126 | adantld |  |-  ( ( ( ( ph /\ p e. ~P RR ) /\ ( a e. p /\ b e. p ) ) /\ ( a =/= b /\ p = { a , b } ) ) -> ( ( ( ( A x. ( a ^ 2 ) ) + ( ( B x. a ) + C ) ) = 0 /\ ( ( A x. ( b ^ 2 ) ) + ( ( B x. b ) + C ) ) = 0 ) -> E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 ) ) | 
						
							| 128 | 111 127 | sylbid |  |-  ( ( ( ( ph /\ p e. ~P RR ) /\ ( a e. p /\ b e. p ) ) /\ ( a =/= b /\ p = { a , b } ) ) -> ( A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 ) ) | 
						
							| 129 | 128 | ex |  |-  ( ( ( ph /\ p e. ~P RR ) /\ ( a e. p /\ b e. p ) ) -> ( ( a =/= b /\ p = { a , b } ) -> ( A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 ) ) ) | 
						
							| 130 | 129 | rexlimdvva |  |-  ( ( ph /\ p e. ~P RR ) -> ( E. a e. p E. b e. p ( a =/= b /\ p = { a , b } ) -> ( A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 ) ) ) | 
						
							| 131 | 92 130 | sylbid |  |-  ( ( ph /\ p e. ~P RR ) -> ( ( # ` p ) = 2 -> ( A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 ) ) ) | 
						
							| 132 | 131 | impd |  |-  ( ( ph /\ p e. ~P RR ) -> ( ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) -> E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 ) ) | 
						
							| 133 | 132 | rexlimdva |  |-  ( ph -> ( E. p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) -> E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 ) ) | 
						
							| 134 | 1 2 3 4 5 | requad01 |  |-  ( ph -> ( E. y e. RR ( ( A x. ( y ^ 2 ) ) + ( ( B x. y ) + C ) ) = 0 <-> 0 <_ D ) ) | 
						
							| 135 | 133 134 | sylibd |  |-  ( ph -> ( E. p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) -> 0 <_ D ) ) | 
						
							| 136 | 135 | con3d |  |-  ( ph -> ( -. 0 <_ D -> -. E. p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) ) | 
						
							| 137 | 136 | impcom |  |-  ( ( -. 0 <_ D /\ ph ) -> -. E. p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) | 
						
							| 138 |  | reurex |  |-  ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) -> E. p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) | 
						
							| 139 | 137 138 | nsyl |  |-  ( ( -. 0 <_ D /\ ph ) -> -. E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) | 
						
							| 140 | 139 | pm2.21d |  |-  ( ( -. 0 <_ D /\ ph ) -> ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) -> 0 < D ) ) | 
						
							| 141 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 142 |  | ltle |  |-  ( ( 0 e. RR /\ D e. RR ) -> ( 0 < D -> 0 <_ D ) ) | 
						
							| 143 | 141 35 142 | syl2anc |  |-  ( ph -> ( 0 < D -> 0 <_ D ) ) | 
						
							| 144 |  | pm2.24 |  |-  ( 0 <_ D -> ( -. 0 <_ D -> E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) ) | 
						
							| 145 | 143 144 | syl6 |  |-  ( ph -> ( 0 < D -> ( -. 0 <_ D -> E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) ) ) | 
						
							| 146 | 145 | com23 |  |-  ( ph -> ( -. 0 <_ D -> ( 0 < D -> E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) ) ) | 
						
							| 147 | 146 | impcom |  |-  ( ( -. 0 <_ D /\ ph ) -> ( 0 < D -> E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) ) | 
						
							| 148 | 140 147 | impbid |  |-  ( ( -. 0 <_ D /\ ph ) -> ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) <-> 0 < D ) ) | 
						
							| 149 | 148 | ex |  |-  ( -. 0 <_ D -> ( ph -> ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) <-> 0 < D ) ) ) | 
						
							| 150 | 90 149 | pm2.61i |  |-  ( ph -> ( E! p e. ~P RR ( ( # ` p ) = 2 /\ A. x e. p ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) <-> 0 < D ) ) |