| Step | Hyp | Ref | Expression | 
						
							| 1 |  | requad2.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | requad2.z | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 3 |  | requad2.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | requad2.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 5 |  | requad2.d | ⊢ ( 𝜑  →  𝐷  =  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 6 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 7 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  ∧  𝑥  ∈  𝑝 )  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  ∧  𝑥  ∈  𝑝 )  →  𝐴  ≠  0 ) | 
						
							| 9 | 3 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  ∧  𝑥  ∈  𝑝 )  →  𝐵  ∈  ℂ ) | 
						
							| 11 | 4 | recnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 12 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  ∧  𝑥  ∈  𝑝 )  →  𝐶  ∈  ℂ ) | 
						
							| 13 |  | elelpwi | ⊢ ( ( 𝑥  ∈  𝑝  ∧  𝑝  ∈  𝒫  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 14 | 13 | expcom | ⊢ ( 𝑝  ∈  𝒫  ℝ  →  ( 𝑥  ∈  𝑝  →  𝑥  ∈  ℝ ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  →  ( 𝑥  ∈  𝑝  →  𝑥  ∈  ℝ ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  ∧  𝑥  ∈  𝑝 )  →  𝑥  ∈  ℝ ) | 
						
							| 17 | 16 | recnd | ⊢ ( ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  ∧  𝑥  ∈  𝑝 )  →  𝑥  ∈  ℂ ) | 
						
							| 18 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  ∧  𝑥  ∈  𝑝 )  →  𝐷  =  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 19 | 7 8 10 12 17 18 | quad | ⊢ ( ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  ∧  𝑥  ∈  𝑝 )  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 20 | 19 | ralbidva | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  →  ( ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑝  ∈  𝒫  ℝ )  →  ( ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  ↔  ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) ) | 
						
							| 22 | 21 | reubidva | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  ↔  ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) ) | 
						
							| 23 |  | eqid | ⊢ { 𝑞  ∈  𝒫  ℝ  ∣  ( ♯ ‘ 𝑞 )  =  2 }  =  { 𝑞  ∈  𝒫  ℝ  ∣  ( ♯ ‘ 𝑞 )  =  2 } | 
						
							| 24 | 23 | pairreueq | ⊢ ( ∃! 𝑝  ∈  { 𝑞  ∈  𝒫  ℝ  ∣  ( ♯ ‘ 𝑞 )  =  2 } ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  ↔  ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 25 | 24 | bicomi | ⊢ ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) )  ↔  ∃! 𝑝  ∈  { 𝑞  ∈  𝒫  ℝ  ∣  ( ♯ ‘ 𝑞 )  =  2 } ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) )  ↔  ∃! 𝑝  ∈  { 𝑞  ∈  𝒫  ℝ  ∣  ( ♯ ‘ 𝑞 )  =  2 } ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 27 | 3 | renegcld | ⊢ ( 𝜑  →  - 𝐵  ∈  ℝ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 29 | 3 | resqcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℝ ) | 
						
							| 30 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  4  ∈  ℝ ) | 
						
							| 32 | 1 4 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐶 )  ∈  ℝ ) | 
						
							| 33 | 31 32 | remulcld | ⊢ ( 𝜑  →  ( 4  ·  ( 𝐴  ·  𝐶 ) )  ∈  ℝ ) | 
						
							| 34 | 29 33 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) )  ∈  ℝ ) | 
						
							| 35 | 5 34 | eqeltrd | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐷  ∈  ℝ ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  0  ≤  𝐷 ) | 
						
							| 38 | 36 37 | resqrtcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 39 | 28 38 | readdcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 40 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 42 | 41 1 | remulcld | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 44 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 45 | 44 | a1i | ⊢ ( 𝜑  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 46 |  | mulne0 | ⊢ ( ( ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) )  →  ( 2  ·  𝐴 )  ≠  0 ) | 
						
							| 47 | 45 6 2 46 | syl12anc | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ≠  0 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ≠  0 ) | 
						
							| 49 | 39 43 48 | redivcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 50 | 3 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐵  ∈  ℝ ) | 
						
							| 51 | 50 | renegcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 52 | 51 38 | resubcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 53 | 40 | a1i | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  2  ∈  ℝ ) | 
						
							| 54 | 1 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐴  ∈  ℝ ) | 
						
							| 55 | 53 54 | remulcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 56 | 52 55 48 | redivcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 57 |  | fveqeq2 | ⊢ ( 𝑞  =  𝑥  →  ( ( ♯ ‘ 𝑞 )  =  2  ↔  ( ♯ ‘ 𝑥 )  =  2 ) ) | 
						
							| 58 | 57 | cbvrabv | ⊢ { 𝑞  ∈  𝒫  ℝ  ∣  ( ♯ ‘ 𝑞 )  =  2 }  =  { 𝑥  ∈  𝒫  ℝ  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 59 | 49 56 58 | paireqne | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ∃! 𝑝  ∈  { 𝑞  ∈  𝒫  ℝ  ∣  ( ♯ ‘ 𝑞 )  =  2 } ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  ↔  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ≠  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 60 | 9 | negcld | ⊢ ( 𝜑  →  - 𝐵  ∈  ℂ ) | 
						
							| 61 | 35 | recnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 62 | 61 | sqrtcld | ⊢ ( 𝜑  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 63 | 60 62 | addcld | ⊢ ( 𝜑  →  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 64 | 60 62 | subcld | ⊢ ( 𝜑  →  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 65 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 66 | 65 6 | mulcld | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℂ ) | 
						
							| 67 |  | div11 | ⊢ ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℂ  ∧  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ℂ  ∧  ( ( 2  ·  𝐴 )  ∈  ℂ  ∧  ( 2  ·  𝐴 )  ≠  0 ) )  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  =  ( - 𝐵  −  ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 68 | 63 64 66 47 67 | syl112anc | ⊢ ( 𝜑  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  =  ( - 𝐵  −  ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 69 | 60 62 | negsubd | ⊢ ( 𝜑  →  ( - 𝐵  +  - ( √ ‘ 𝐷 ) )  =  ( - 𝐵  −  ( √ ‘ 𝐷 ) ) ) | 
						
							| 70 | 69 | eqcomd | ⊢ ( 𝜑  →  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  =  ( - 𝐵  +  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 71 | 70 | eqeq2d | ⊢ ( 𝜑  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  =  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ↔  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  =  ( - 𝐵  +  - ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 72 | 62 | negcld | ⊢ ( 𝜑  →  - ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 73 | 60 62 72 | addcand | ⊢ ( 𝜑  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  =  ( - 𝐵  +  - ( √ ‘ 𝐷 ) )  ↔  ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 74 | 68 71 73 | 3bitrd | ⊢ ( 𝜑  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 75 | 74 | necon3bid | ⊢ ( 𝜑  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ≠  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  ( √ ‘ 𝐷 )  ≠  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ≠  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  ( √ ‘ 𝐷 )  ≠  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 77 |  | cnsqrt00 | ⊢ ( 𝐷  ∈  ℂ  →  ( ( √ ‘ 𝐷 )  =  0  ↔  𝐷  =  0 ) ) | 
						
							| 78 | 61 77 | syl | ⊢ ( 𝜑  →  ( ( √ ‘ 𝐷 )  =  0  ↔  𝐷  =  0 ) ) | 
						
							| 79 | 78 | necon3bid | ⊢ ( 𝜑  →  ( ( √ ‘ 𝐷 )  ≠  0  ↔  𝐷  ≠  0 ) ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( √ ‘ 𝐷 )  ≠  0  ↔  𝐷  ≠  0 ) ) | 
						
							| 81 | 62 | eqnegd | ⊢ ( 𝜑  →  ( ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 )  ↔  ( √ ‘ 𝐷 )  =  0 ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 )  ↔  ( √ ‘ 𝐷 )  =  0 ) ) | 
						
							| 83 | 82 | necon3bid | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( √ ‘ 𝐷 )  ≠  - ( √ ‘ 𝐷 )  ↔  ( √ ‘ 𝐷 )  ≠  0 ) ) | 
						
							| 84 |  | 0red | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  0  ∈  ℝ ) | 
						
							| 85 | 84 36 37 | leltned | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( 0  <  𝐷  ↔  𝐷  ≠  0 ) ) | 
						
							| 86 | 80 83 85 | 3bitr4d | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( √ ‘ 𝐷 )  ≠  - ( √ ‘ 𝐷 )  ↔  0  <  𝐷 ) ) | 
						
							| 87 | 76 86 | bitrd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ≠  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  0  <  𝐷 ) ) | 
						
							| 88 | 26 59 87 | 3bitrd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) )  ↔  0  <  𝐷 ) ) | 
						
							| 89 | 22 88 | bitrd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  ↔  0  <  𝐷 ) ) | 
						
							| 90 | 89 | expcom | ⊢ ( 0  ≤  𝐷  →  ( 𝜑  →  ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  ↔  0  <  𝐷 ) ) ) | 
						
							| 91 |  | hash2prb | ⊢ ( 𝑝  ∈  𝒫  ℝ  →  ( ( ♯ ‘ 𝑝 )  =  2  ↔  ∃ 𝑎  ∈  𝑝 ∃ 𝑏  ∈  𝑝 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  →  ( ( ♯ ‘ 𝑝 )  =  2  ↔  ∃ 𝑎  ∈  𝑝 ∃ 𝑏  ∈  𝑝 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) ) ) | 
						
							| 93 |  | raleq | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ∀ 𝑥  ∈  { 𝑎 ,  𝑏 } ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 94 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 95 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 96 |  | oveq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 97 | 96 | oveq2d | ⊢ ( 𝑥  =  𝑎  →  ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  =  ( 𝐴  ·  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 98 |  | oveq2 | ⊢ ( 𝑥  =  𝑎  →  ( 𝐵  ·  𝑥 )  =  ( 𝐵  ·  𝑎 ) ) | 
						
							| 99 | 98 | oveq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝐵  ·  𝑥 )  +  𝐶 )  =  ( ( 𝐵  ·  𝑎 )  +  𝐶 ) ) | 
						
							| 100 | 97 99 | oveq12d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  ( ( 𝐴  ·  ( 𝑎 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑎 )  +  𝐶 ) ) ) | 
						
							| 101 | 100 | eqeq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( ( 𝐴  ·  ( 𝑎 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑎 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 102 |  | oveq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 103 | 102 | oveq2d | ⊢ ( 𝑥  =  𝑏  →  ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  =  ( 𝐴  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 104 |  | oveq2 | ⊢ ( 𝑥  =  𝑏  →  ( 𝐵  ·  𝑥 )  =  ( 𝐵  ·  𝑏 ) ) | 
						
							| 105 | 104 | oveq1d | ⊢ ( 𝑥  =  𝑏  →  ( ( 𝐵  ·  𝑥 )  +  𝐶 )  =  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) ) | 
						
							| 106 | 103 105 | oveq12d | ⊢ ( 𝑥  =  𝑏  →  ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) ) ) | 
						
							| 107 | 106 | eqeq1d | ⊢ ( 𝑥  =  𝑏  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 108 | 94 95 101 107 | ralpr | ⊢ ( ∀ 𝑥  ∈  { 𝑎 ,  𝑏 } ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( ( ( 𝐴  ·  ( 𝑎 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑎 )  +  𝐶 ) )  =  0  ∧  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 109 | 93 108 | bitrdi | ⊢ ( 𝑝  =  { 𝑎 ,  𝑏 }  →  ( ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( ( ( 𝐴  ·  ( 𝑎 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑎 )  +  𝐶 ) )  =  0  ∧  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0 ) ) ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  ( ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( ( ( 𝐴  ·  ( 𝑎 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑎 )  +  𝐶 ) )  =  0  ∧  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0 ) ) ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  ∧  ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( ( ( 𝐴  ·  ( 𝑎 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑎 )  +  𝐶 ) )  =  0  ∧  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0 ) ) ) | 
						
							| 112 |  | elelpwi | ⊢ ( ( 𝑏  ∈  𝑝  ∧  𝑝  ∈  𝒫  ℝ )  →  𝑏  ∈  ℝ ) | 
						
							| 113 | 112 | ex | ⊢ ( 𝑏  ∈  𝑝  →  ( 𝑝  ∈  𝒫  ℝ  →  𝑏  ∈  ℝ ) ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 )  →  ( 𝑝  ∈  𝒫  ℝ  →  𝑏  ∈  ℝ ) ) | 
						
							| 115 | 114 | com12 | ⊢ ( 𝑝  ∈  𝒫  ℝ  →  ( ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 )  →  𝑏  ∈  ℝ ) ) | 
						
							| 116 | 115 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  →  ( ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 )  →  𝑏  ∈  ℝ ) ) | 
						
							| 117 | 116 | imp | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  ∧  ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 ) )  →  𝑏  ∈  ℝ ) | 
						
							| 118 |  | oveq1 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑦 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 119 | 118 | oveq2d | ⊢ ( 𝑦  =  𝑏  →  ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  =  ( 𝐴  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 120 |  | oveq2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝐵  ·  𝑦 )  =  ( 𝐵  ·  𝑏 ) ) | 
						
							| 121 | 120 | oveq1d | ⊢ ( 𝑦  =  𝑏  →  ( ( 𝐵  ·  𝑦 )  +  𝐶 )  =  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) ) | 
						
							| 122 | 119 121 | oveq12d | ⊢ ( 𝑦  =  𝑏  →  ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) ) ) | 
						
							| 123 | 122 | eqeq1d | ⊢ ( 𝑦  =  𝑏  →  ( ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0  ↔  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 124 | 123 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  ∧  ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 ) )  ∧  𝑦  =  𝑏 )  →  ( ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0  ↔  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 125 | 117 124 | rspcedv | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  ∧  ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 ) )  →  ( ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0  →  ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  ∧  ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0  →  ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 127 | 126 | adantld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  ∧  ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ( ( ( 𝐴  ·  ( 𝑎 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑎 )  +  𝐶 ) )  =  0  ∧  ( ( 𝐴  ·  ( 𝑏 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑏 )  +  𝐶 ) )  =  0 )  →  ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 128 | 111 127 | sylbid | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  ∧  ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 ) )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) )  →  ( ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  →  ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 129 | 128 | ex | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  ∧  ( 𝑎  ∈  𝑝  ∧  𝑏  ∈  𝑝 ) )  →  ( ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  ( ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  →  ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0 ) ) ) | 
						
							| 130 | 129 | rexlimdvva | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  →  ( ∃ 𝑎  ∈  𝑝 ∃ 𝑏  ∈  𝑝 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  →  ( ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  →  ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0 ) ) ) | 
						
							| 131 | 92 130 | sylbid | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  →  ( ( ♯ ‘ 𝑝 )  =  2  →  ( ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  →  ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0 ) ) ) | 
						
							| 132 | 131 | impd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝒫  ℝ )  →  ( ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  →  ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 133 | 132 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  →  ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 134 | 1 2 3 4 5 | requad01 | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ℝ ( ( 𝐴  ·  ( 𝑦 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑦 )  +  𝐶 ) )  =  0  ↔  0  ≤  𝐷 ) ) | 
						
							| 135 | 133 134 | sylibd | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  →  0  ≤  𝐷 ) ) | 
						
							| 136 | 135 | con3d | ⊢ ( 𝜑  →  ( ¬  0  ≤  𝐷  →  ¬  ∃ 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) ) | 
						
							| 137 | 136 | impcom | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ¬  ∃ 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 138 |  | reurex | ⊢ ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  →  ∃ 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 139 | 137 138 | nsyl | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ¬  ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 140 | 139 | pm2.21d | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  →  0  <  𝐷 ) ) | 
						
							| 141 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 142 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  ( 0  <  𝐷  →  0  ≤  𝐷 ) ) | 
						
							| 143 | 141 35 142 | syl2anc | ⊢ ( 𝜑  →  ( 0  <  𝐷  →  0  ≤  𝐷 ) ) | 
						
							| 144 |  | pm2.24 | ⊢ ( 0  ≤  𝐷  →  ( ¬  0  ≤  𝐷  →  ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) ) | 
						
							| 145 | 143 144 | syl6 | ⊢ ( 𝜑  →  ( 0  <  𝐷  →  ( ¬  0  ≤  𝐷  →  ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) ) ) | 
						
							| 146 | 145 | com23 | ⊢ ( 𝜑  →  ( ¬  0  ≤  𝐷  →  ( 0  <  𝐷  →  ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) ) ) | 
						
							| 147 | 146 | impcom | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ( 0  <  𝐷  →  ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) ) | 
						
							| 148 | 140 147 | impbid | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  ↔  0  <  𝐷 ) ) | 
						
							| 149 | 148 | ex | ⊢ ( ¬  0  ≤  𝐷  →  ( 𝜑  →  ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  ↔  0  <  𝐷 ) ) ) | 
						
							| 150 | 90 149 | pm2.61i | ⊢ ( 𝜑  →  ( ∃! 𝑝  ∈  𝒫  ℝ ( ( ♯ ‘ 𝑝 )  =  2  ∧  ∀ 𝑥  ∈  𝑝 ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 )  ↔  0  <  𝐷 ) ) |