Step |
Hyp |
Ref |
Expression |
1 |
|
requad2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
requad2.z |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
|
requad2.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
requad2.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
|
requad2.d |
⊢ ( 𝜑 → 𝐷 = ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ) |
6 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
7 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐴 ∈ ℂ ) |
8 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐴 ≠ 0 ) |
9 |
3
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
10 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐵 ∈ ℂ ) |
11 |
4
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
12 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐶 ∈ ℂ ) |
13 |
|
elelpwi |
⊢ ( ( 𝑥 ∈ 𝑝 ∧ 𝑝 ∈ 𝒫 ℝ ) → 𝑥 ∈ ℝ ) |
14 |
13
|
expcom |
⊢ ( 𝑝 ∈ 𝒫 ℝ → ( 𝑥 ∈ 𝑝 → 𝑥 ∈ ℝ ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) → ( 𝑥 ∈ 𝑝 → 𝑥 ∈ ℝ ) ) |
16 |
15
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝑥 ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝑥 ∈ ℂ ) |
18 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → 𝐷 = ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ) |
19 |
7 8 10 12 17 18
|
quad |
⊢ ( ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ 𝑥 ∈ 𝑝 ) → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) |
20 |
19
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) |
21 |
20
|
anbi2d |
⊢ ( ( ( 𝜑 ∧ 0 ≤ 𝐷 ) ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) ) |
22 |
21
|
reubidva |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) ) |
23 |
|
eqid |
⊢ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } = { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } |
24 |
23
|
pairreueq |
⊢ ( ∃! 𝑝 ∈ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ↔ ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) |
25 |
24
|
bicomi |
⊢ ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ↔ ∃! 𝑝 ∈ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) |
26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ↔ ∃! 𝑝 ∈ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ) |
27 |
3
|
renegcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → - 𝐵 ∈ ℝ ) |
29 |
3
|
resqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
30 |
|
4re |
⊢ 4 ∈ ℝ |
31 |
30
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ ) |
32 |
1 4
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
33 |
31 32
|
remulcld |
⊢ ( 𝜑 → ( 4 · ( 𝐴 · 𝐶 ) ) ∈ ℝ ) |
34 |
29 33
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ∈ ℝ ) |
35 |
5 34
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 𝐷 ∈ ℝ ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 0 ≤ 𝐷 ) |
38 |
36 37
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
39 |
28 38
|
readdcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( - 𝐵 + ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
40 |
|
2re |
⊢ 2 ∈ ℝ |
41 |
40
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
42 |
41 1
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ∈ ℝ ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
44 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
45 |
44
|
a1i |
⊢ ( 𝜑 → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
46 |
|
mulne0 |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 2 · 𝐴 ) ≠ 0 ) |
47 |
45 6 2 46
|
syl12anc |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ≠ 0 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( 2 · 𝐴 ) ≠ 0 ) |
49 |
39 43 48
|
redivcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∈ ℝ ) |
50 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 𝐵 ∈ ℝ ) |
51 |
50
|
renegcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → - 𝐵 ∈ ℝ ) |
52 |
51 38
|
resubcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( - 𝐵 − ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
53 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 2 ∈ ℝ ) |
54 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 𝐴 ∈ ℝ ) |
55 |
53 54
|
remulcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
56 |
52 55 48
|
redivcld |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∈ ℝ ) |
57 |
|
fveqeq2 |
⊢ ( 𝑞 = 𝑥 → ( ( ♯ ‘ 𝑞 ) = 2 ↔ ( ♯ ‘ 𝑥 ) = 2 ) ) |
58 |
57
|
cbvrabv |
⊢ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } = { 𝑥 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑥 ) = 2 } |
59 |
49 56 58
|
paireqne |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ { 𝑞 ∈ 𝒫 ℝ ∣ ( ♯ ‘ 𝑞 ) = 2 } ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ↔ ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ≠ ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) |
60 |
9
|
negcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℂ ) |
61 |
35
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
62 |
61
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝐷 ) ∈ ℂ ) |
63 |
60 62
|
addcld |
⊢ ( 𝜑 → ( - 𝐵 + ( √ ‘ 𝐷 ) ) ∈ ℂ ) |
64 |
60 62
|
subcld |
⊢ ( 𝜑 → ( - 𝐵 − ( √ ‘ 𝐷 ) ) ∈ ℂ ) |
65 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
66 |
65 6
|
mulcld |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ∈ ℂ ) |
67 |
|
div11 |
⊢ ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) ∈ ℂ ∧ ( - 𝐵 − ( √ ‘ 𝐷 ) ) ∈ ℂ ∧ ( ( 2 · 𝐴 ) ∈ ℂ ∧ ( 2 · 𝐴 ) ≠ 0 ) ) → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 − ( √ ‘ 𝐷 ) ) ) ) |
68 |
63 64 66 47 67
|
syl112anc |
⊢ ( 𝜑 → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 − ( √ ‘ 𝐷 ) ) ) ) |
69 |
60 62
|
negsubd |
⊢ ( 𝜑 → ( - 𝐵 + - ( √ ‘ 𝐷 ) ) = ( - 𝐵 − ( √ ‘ 𝐷 ) ) ) |
70 |
69
|
eqcomd |
⊢ ( 𝜑 → ( - 𝐵 − ( √ ‘ 𝐷 ) ) = ( - 𝐵 + - ( √ ‘ 𝐷 ) ) ) |
71 |
70
|
eqeq2d |
⊢ ( 𝜑 → ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 − ( √ ‘ 𝐷 ) ) ↔ ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 + - ( √ ‘ 𝐷 ) ) ) ) |
72 |
62
|
negcld |
⊢ ( 𝜑 → - ( √ ‘ 𝐷 ) ∈ ℂ ) |
73 |
60 62 72
|
addcand |
⊢ ( 𝜑 → ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) = ( - 𝐵 + - ( √ ‘ 𝐷 ) ) ↔ ( √ ‘ 𝐷 ) = - ( √ ‘ 𝐷 ) ) ) |
74 |
68 71 73
|
3bitrd |
⊢ ( 𝜑 → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( √ ‘ 𝐷 ) = - ( √ ‘ 𝐷 ) ) ) |
75 |
74
|
necon3bid |
⊢ ( 𝜑 → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ≠ ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( √ ‘ 𝐷 ) ≠ - ( √ ‘ 𝐷 ) ) ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ≠ ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ ( √ ‘ 𝐷 ) ≠ - ( √ ‘ 𝐷 ) ) ) |
77 |
|
cnsqrt00 |
⊢ ( 𝐷 ∈ ℂ → ( ( √ ‘ 𝐷 ) = 0 ↔ 𝐷 = 0 ) ) |
78 |
61 77
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ 𝐷 ) = 0 ↔ 𝐷 = 0 ) ) |
79 |
78
|
necon3bid |
⊢ ( 𝜑 → ( ( √ ‘ 𝐷 ) ≠ 0 ↔ 𝐷 ≠ 0 ) ) |
80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ 𝐷 ) ≠ 0 ↔ 𝐷 ≠ 0 ) ) |
81 |
62
|
eqnegd |
⊢ ( 𝜑 → ( ( √ ‘ 𝐷 ) = - ( √ ‘ 𝐷 ) ↔ ( √ ‘ 𝐷 ) = 0 ) ) |
82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ 𝐷 ) = - ( √ ‘ 𝐷 ) ↔ ( √ ‘ 𝐷 ) = 0 ) ) |
83 |
82
|
necon3bid |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ 𝐷 ) ≠ - ( √ ‘ 𝐷 ) ↔ ( √ ‘ 𝐷 ) ≠ 0 ) ) |
84 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → 0 ∈ ℝ ) |
85 |
84 36 37
|
leltned |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( 0 < 𝐷 ↔ 𝐷 ≠ 0 ) ) |
86 |
80 83 85
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( √ ‘ 𝐷 ) ≠ - ( √ ‘ 𝐷 ) ↔ 0 < 𝐷 ) ) |
87 |
76 86
|
bitrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ≠ ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ↔ 0 < 𝐷 ) ) |
88 |
26 59 87
|
3bitrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( 𝑥 = ( ( - 𝐵 + ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ∨ 𝑥 = ( ( - 𝐵 − ( √ ‘ 𝐷 ) ) / ( 2 · 𝐴 ) ) ) ) ↔ 0 < 𝐷 ) ) |
89 |
22 88
|
bitrd |
⊢ ( ( 𝜑 ∧ 0 ≤ 𝐷 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) |
90 |
89
|
expcom |
⊢ ( 0 ≤ 𝐷 → ( 𝜑 → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) ) |
91 |
|
hash2prb |
⊢ ( 𝑝 ∈ 𝒫 ℝ → ( ( ♯ ‘ 𝑝 ) = 2 ↔ ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( ♯ ‘ 𝑝 ) = 2 ↔ ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ) |
93 |
|
raleq |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ∀ 𝑥 ∈ { 𝑎 , 𝑏 } ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) |
94 |
|
vex |
⊢ 𝑎 ∈ V |
95 |
|
vex |
⊢ 𝑏 ∈ V |
96 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
97 |
96
|
oveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝐴 · ( 𝑥 ↑ 2 ) ) = ( 𝐴 · ( 𝑎 ↑ 2 ) ) ) |
98 |
|
oveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑎 ) ) |
99 |
98
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐵 · 𝑥 ) + 𝐶 ) = ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) |
100 |
97 99
|
oveq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) ) |
101 |
100
|
eqeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ) ) |
102 |
|
oveq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
103 |
102
|
oveq2d |
⊢ ( 𝑥 = 𝑏 → ( 𝐴 · ( 𝑥 ↑ 2 ) ) = ( 𝐴 · ( 𝑏 ↑ 2 ) ) ) |
104 |
|
oveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑏 ) ) |
105 |
104
|
oveq1d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝐵 · 𝑥 ) + 𝐶 ) = ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) |
106 |
103 105
|
oveq12d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) ) |
107 |
106
|
eqeq1d |
⊢ ( 𝑥 = 𝑏 → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) |
108 |
94 95 101 107
|
ralpr |
⊢ ( ∀ 𝑥 ∈ { 𝑎 , 𝑏 } ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) |
109 |
93 108
|
bitrdi |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) ) |
110 |
109
|
adantl |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) ) |
111 |
110
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ↔ ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) ) |
112 |
|
elelpwi |
⊢ ( ( 𝑏 ∈ 𝑝 ∧ 𝑝 ∈ 𝒫 ℝ ) → 𝑏 ∈ ℝ ) |
113 |
112
|
ex |
⊢ ( 𝑏 ∈ 𝑝 → ( 𝑝 ∈ 𝒫 ℝ → 𝑏 ∈ ℝ ) ) |
114 |
113
|
adantl |
⊢ ( ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) → ( 𝑝 ∈ 𝒫 ℝ → 𝑏 ∈ ℝ ) ) |
115 |
114
|
com12 |
⊢ ( 𝑝 ∈ 𝒫 ℝ → ( ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) → 𝑏 ∈ ℝ ) ) |
116 |
115
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) → 𝑏 ∈ ℝ ) ) |
117 |
116
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) → 𝑏 ∈ ℝ ) |
118 |
|
oveq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
119 |
118
|
oveq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝐴 · ( 𝑦 ↑ 2 ) ) = ( 𝐴 · ( 𝑏 ↑ 2 ) ) ) |
120 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝐵 · 𝑦 ) = ( 𝐵 · 𝑏 ) ) |
121 |
120
|
oveq1d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐵 · 𝑦 ) + 𝐶 ) = ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) |
122 |
119 121
|
oveq12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) ) |
123 |
122
|
eqeq1d |
⊢ ( 𝑦 = 𝑏 → ( ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ↔ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) |
124 |
123
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ 𝑦 = 𝑏 ) → ( ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ↔ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) ) |
125 |
117 124
|
rspcedv |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) → ( ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
126 |
125
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
127 |
126
|
adantld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( ( 𝐴 · ( 𝑎 ↑ 2 ) ) + ( ( 𝐵 · 𝑎 ) + 𝐶 ) ) = 0 ∧ ( ( 𝐴 · ( 𝑏 ↑ 2 ) ) + ( ( 𝐵 · 𝑏 ) + 𝐶 ) ) = 0 ) → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
128 |
111 127
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
129 |
128
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) ∧ ( 𝑎 ∈ 𝑝 ∧ 𝑏 ∈ 𝑝 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) ) |
130 |
129
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) ) |
131 |
92 130
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( ♯ ‘ 𝑝 ) = 2 → ( ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) ) |
132 |
131
|
impd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝒫 ℝ ) → ( ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
133 |
132
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ) ) |
134 |
1 2 3 4 5
|
requad01 |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ( ( 𝐴 · ( 𝑦 ↑ 2 ) ) + ( ( 𝐵 · 𝑦 ) + 𝐶 ) ) = 0 ↔ 0 ≤ 𝐷 ) ) |
135 |
133 134
|
sylibd |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → 0 ≤ 𝐷 ) ) |
136 |
135
|
con3d |
⊢ ( 𝜑 → ( ¬ 0 ≤ 𝐷 → ¬ ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) |
137 |
136
|
impcom |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ¬ ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) |
138 |
|
reurex |
⊢ ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → ∃ 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) |
139 |
137 138
|
nsyl |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ¬ ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) |
140 |
139
|
pm2.21d |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) → 0 < 𝐷 ) ) |
141 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
142 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 0 < 𝐷 → 0 ≤ 𝐷 ) ) |
143 |
141 35 142
|
syl2anc |
⊢ ( 𝜑 → ( 0 < 𝐷 → 0 ≤ 𝐷 ) ) |
144 |
|
pm2.24 |
⊢ ( 0 ≤ 𝐷 → ( ¬ 0 ≤ 𝐷 → ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) |
145 |
143 144
|
syl6 |
⊢ ( 𝜑 → ( 0 < 𝐷 → ( ¬ 0 ≤ 𝐷 → ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) ) |
146 |
145
|
com23 |
⊢ ( 𝜑 → ( ¬ 0 ≤ 𝐷 → ( 0 < 𝐷 → ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) ) |
147 |
146
|
impcom |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ( 0 < 𝐷 → ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ) ) |
148 |
140 147
|
impbid |
⊢ ( ( ¬ 0 ≤ 𝐷 ∧ 𝜑 ) → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) |
149 |
148
|
ex |
⊢ ( ¬ 0 ≤ 𝐷 → ( 𝜑 → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) ) |
150 |
90 149
|
pm2.61i |
⊢ ( 𝜑 → ( ∃! 𝑝 ∈ 𝒫 ℝ ( ( ♯ ‘ 𝑝 ) = 2 ∧ ∀ 𝑥 ∈ 𝑝 ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( ( 𝐵 · 𝑥 ) + 𝐶 ) ) = 0 ) ↔ 0 < 𝐷 ) ) |