| Step | Hyp | Ref | Expression | 
						
							| 1 |  | requad2.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | requad2.z | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 3 |  | requad2.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | requad2.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 5 |  | requad2.d | ⊢ ( 𝜑  →  𝐷  =  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 6 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝐴  ≠  0 ) | 
						
							| 9 | 3 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝐵  ∈  ℂ ) | 
						
							| 11 | 4 | recnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝐶  ∈  ℂ ) | 
						
							| 13 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 15 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝐷  =  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 16 | 7 8 10 12 14 15 | quad | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 17 |  | eleq1 | ⊢ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( 𝑥  ∈  ℝ  ↔  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  ( 𝑥  ∈  ℝ  ↔  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) ) | 
						
							| 19 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 21 | 20 1 | remulcld | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 23 | 9 | negcld | ⊢ ( 𝜑  →  - 𝐵  ∈  ℂ ) | 
						
							| 24 | 3 | resqcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℝ ) | 
						
							| 25 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  4  ∈  ℝ ) | 
						
							| 27 | 1 4 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐶 )  ∈  ℝ ) | 
						
							| 28 | 26 27 | remulcld | ⊢ ( 𝜑  →  ( 4  ·  ( 𝐴  ·  𝐶 ) )  ∈  ℝ ) | 
						
							| 29 | 24 28 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) )  ∈  ℝ ) | 
						
							| 30 | 5 29 | eqeltrd | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 31 | 30 | recnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 32 | 31 | sqrtcld | ⊢ ( 𝜑  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 33 | 23 32 | addcld | ⊢ ( 𝜑  →  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 35 | 3 | renegcld | ⊢ ( 𝜑  →  - 𝐵  ∈  ℝ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 37 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 38 | 31 | negnegd | ⊢ ( 𝜑  →  - - 𝐷  =  𝐷 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  - - 𝐷  =  𝐷 ) | 
						
							| 40 | 39 | eqcomd | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  𝐷  =  - - 𝐷 ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( √ ‘ 𝐷 )  =  ( √ ‘ - - 𝐷 ) ) | 
						
							| 42 | 30 | renegcld | ⊢ ( 𝜑  →  - 𝐷  ∈  ℝ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  - 𝐷  ∈  ℝ ) | 
						
							| 44 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 45 | 30 44 | ltnled | ⊢ ( 𝜑  →  ( 𝐷  <  0  ↔  ¬  0  ≤  𝐷 ) ) | 
						
							| 46 |  | ltle | ⊢ ( ( 𝐷  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝐷  <  0  →  𝐷  ≤  0 ) ) | 
						
							| 47 | 30 44 46 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷  <  0  →  𝐷  ≤  0 ) ) | 
						
							| 48 | 45 47 | sylbird | ⊢ ( 𝜑  →  ( ¬  0  ≤  𝐷  →  𝐷  ≤  0 ) ) | 
						
							| 49 | 48 | imp | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  𝐷  ≤  0 ) | 
						
							| 50 | 30 | le0neg1d | ⊢ ( 𝜑  →  ( 𝐷  ≤  0  ↔  0  ≤  - 𝐷 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( 𝐷  ≤  0  ↔  0  ≤  - 𝐷 ) ) | 
						
							| 52 | 49 51 | mpbid | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  0  ≤  - 𝐷 ) | 
						
							| 53 | 43 52 | sqrtnegd | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( √ ‘ - - 𝐷 )  =  ( i  ·  ( √ ‘ - 𝐷 ) ) ) | 
						
							| 54 | 41 53 | eqtrd | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( √ ‘ 𝐷 )  =  ( i  ·  ( √ ‘ - 𝐷 ) ) ) | 
						
							| 55 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  i  ∈  ℂ ) | 
						
							| 57 | 31 | negcld | ⊢ ( 𝜑  →  - 𝐷  ∈  ℂ ) | 
						
							| 58 | 57 | sqrtcld | ⊢ ( 𝜑  →  ( √ ‘ - 𝐷 )  ∈  ℂ ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( √ ‘ - 𝐷 )  ∈  ℂ ) | 
						
							| 60 | 56 59 | mulcomd | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( i  ·  ( √ ‘ - 𝐷 ) )  =  ( ( √ ‘ - 𝐷 )  ·  i ) ) | 
						
							| 61 | 43 52 | resqrtcld | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( √ ‘ - 𝐷 )  ∈  ℝ ) | 
						
							| 62 |  | inelr | ⊢ ¬  i  ∈  ℝ | 
						
							| 63 |  | eldif | ⊢ ( i  ∈  ( ℂ  ∖  ℝ )  ↔  ( i  ∈  ℂ  ∧  ¬  i  ∈  ℝ ) ) | 
						
							| 64 | 55 62 63 | mpbir2an | ⊢ i  ∈  ( ℂ  ∖  ℝ ) | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  i  ∈  ( ℂ  ∖  ℝ ) ) | 
						
							| 66 | 30 | lt0neg1d | ⊢ ( 𝜑  →  ( 𝐷  <  0  ↔  0  <  - 𝐷 ) ) | 
						
							| 67 |  | ltne | ⊢ ( ( 0  ∈  ℝ  ∧  0  <  - 𝐷 )  →  - 𝐷  ≠  0 ) | 
						
							| 68 | 44 67 | sylan | ⊢ ( ( 𝜑  ∧  0  <  - 𝐷 )  →  - 𝐷  ≠  0 ) | 
						
							| 69 | 42 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝐷 )  →  - 𝐷  ∈  ℝ ) | 
						
							| 70 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝐷  ∈  ℝ )  →  ( 0  <  - 𝐷  →  0  ≤  - 𝐷 ) ) | 
						
							| 71 | 44 42 70 | syl2anc | ⊢ ( 𝜑  →  ( 0  <  - 𝐷  →  0  ≤  - 𝐷 ) ) | 
						
							| 72 | 71 | imp | ⊢ ( ( 𝜑  ∧  0  <  - 𝐷 )  →  0  ≤  - 𝐷 ) | 
						
							| 73 |  | sqrt00 | ⊢ ( ( - 𝐷  ∈  ℝ  ∧  0  ≤  - 𝐷 )  →  ( ( √ ‘ - 𝐷 )  =  0  ↔  - 𝐷  =  0 ) ) | 
						
							| 74 | 69 72 73 | syl2anc | ⊢ ( ( 𝜑  ∧  0  <  - 𝐷 )  →  ( ( √ ‘ - 𝐷 )  =  0  ↔  - 𝐷  =  0 ) ) | 
						
							| 75 | 74 | bicomd | ⊢ ( ( 𝜑  ∧  0  <  - 𝐷 )  →  ( - 𝐷  =  0  ↔  ( √ ‘ - 𝐷 )  =  0 ) ) | 
						
							| 76 | 75 | necon3bid | ⊢ ( ( 𝜑  ∧  0  <  - 𝐷 )  →  ( - 𝐷  ≠  0  ↔  ( √ ‘ - 𝐷 )  ≠  0 ) ) | 
						
							| 77 | 68 76 | mpbid | ⊢ ( ( 𝜑  ∧  0  <  - 𝐷 )  →  ( √ ‘ - 𝐷 )  ≠  0 ) | 
						
							| 78 | 77 | ex | ⊢ ( 𝜑  →  ( 0  <  - 𝐷  →  ( √ ‘ - 𝐷 )  ≠  0 ) ) | 
						
							| 79 | 66 78 | sylbid | ⊢ ( 𝜑  →  ( 𝐷  <  0  →  ( √ ‘ - 𝐷 )  ≠  0 ) ) | 
						
							| 80 | 45 79 | sylbird | ⊢ ( 𝜑  →  ( ¬  0  ≤  𝐷  →  ( √ ‘ - 𝐷 )  ≠  0 ) ) | 
						
							| 81 | 80 | imp | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( √ ‘ - 𝐷 )  ≠  0 ) | 
						
							| 82 | 61 65 81 | recnmulnred | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( ( √ ‘ - 𝐷 )  ·  i )  ∉  ℝ ) | 
						
							| 83 |  | df-nel | ⊢ ( ( ( √ ‘ - 𝐷 )  ·  i )  ∉  ℝ  ↔  ¬  ( ( √ ‘ - 𝐷 )  ·  i )  ∈  ℝ ) | 
						
							| 84 | 82 83 | sylib | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ¬  ( ( √ ‘ - 𝐷 )  ·  i )  ∈  ℝ ) | 
						
							| 85 | 60 84 | eqneltrd | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ¬  ( i  ·  ( √ ‘ - 𝐷 ) )  ∈  ℝ ) | 
						
							| 86 | 54 85 | eqneltrd | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ¬  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 87 | 37 86 | eldifd | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( √ ‘ 𝐷 )  ∈  ( ℂ  ∖  ℝ ) ) | 
						
							| 88 | 36 87 | readdcnnred | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∉  ℝ ) | 
						
							| 89 |  | df-nel | ⊢ ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∉  ℝ  ↔  ¬  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 90 | 88 89 | sylib | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ¬  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 91 | 34 90 | eldifd | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ( ℂ  ∖  ℝ ) ) | 
						
							| 92 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 93 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 94 | 93 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 95 | 92 6 94 2 | mulne0d | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ≠  0 ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ≠  0 ) | 
						
							| 97 | 22 91 96 | cndivrenred | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∉  ℝ ) | 
						
							| 98 |  | df-nel | ⊢ ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∉  ℝ  ↔  ¬  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 99 | 97 98 | sylib | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ¬  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 100 | 99 | ex | ⊢ ( 𝜑  →  ( ¬  0  ≤  𝐷  →  ¬  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) ) | 
						
							| 101 | 100 | con4d | ⊢ ( 𝜑  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ  →  0  ≤  𝐷 ) ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ  →  0  ≤  𝐷 ) ) | 
						
							| 103 | 18 102 | sylbid | ⊢ ( ( 𝜑  ∧  𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  ( 𝑥  ∈  ℝ  →  0  ≤  𝐷 ) ) | 
						
							| 104 | 103 | ex | ⊢ ( 𝜑  →  ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( 𝑥  ∈  ℝ  →  0  ≤  𝐷 ) ) ) | 
						
							| 105 |  | eleq1 | ⊢ ( 𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( 𝑥  ∈  ℝ  ↔  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  ( 𝑥  ∈  ℝ  ↔  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) ) | 
						
							| 107 | 23 32 | subcld | ⊢ ( 𝜑  →  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 109 | 36 87 | resubcnnred | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∉  ℝ ) | 
						
							| 110 |  | df-nel | ⊢ ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∉  ℝ  ↔  ¬  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 111 | 109 110 | sylib | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ¬  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 112 | 108 111 | eldifd | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ( ℂ  ∖  ℝ ) ) | 
						
							| 113 | 22 112 96 | cndivrenred | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∉  ℝ ) | 
						
							| 114 |  | df-nel | ⊢ ( ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∉  ℝ  ↔  ¬  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 115 | 113 114 | sylib | ⊢ ( ( 𝜑  ∧  ¬  0  ≤  𝐷 )  →  ¬  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 116 | 115 | ex | ⊢ ( 𝜑  →  ( ¬  0  ≤  𝐷  →  ¬  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) ) | 
						
							| 117 | 116 | con4d | ⊢ ( 𝜑  →  ( ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ  →  0  ≤  𝐷 ) ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  ( ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ  →  0  ≤  𝐷 ) ) | 
						
							| 119 | 106 118 | sylbid | ⊢ ( ( 𝜑  ∧  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  ( 𝑥  ∈  ℝ  →  0  ≤  𝐷 ) ) | 
						
							| 120 | 119 | ex | ⊢ ( 𝜑  →  ( 𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( 𝑥  ∈  ℝ  →  0  ≤  𝐷 ) ) ) | 
						
							| 121 | 104 120 | jaod | ⊢ ( 𝜑  →  ( ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  ( 𝑥  ∈  ℝ  →  0  ≤  𝐷 ) ) ) | 
						
							| 122 | 121 | com23 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  →  ( ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  0  ≤  𝐷 ) ) ) | 
						
							| 123 | 122 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  0  ≤  𝐷 ) ) | 
						
							| 124 | 16 123 | sylbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  →  0  ≤  𝐷 ) ) | 
						
							| 125 | 124 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  →  0  ≤  𝐷 ) ) | 
						
							| 126 | 35 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 127 | 30 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐷  ∈  ℝ ) | 
						
							| 128 |  | simpr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  0  ≤  𝐷 ) | 
						
							| 129 | 127 128 | resqrtcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 130 | 126 129 | readdcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 131 | 19 | a1i | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  2  ∈  ℝ ) | 
						
							| 132 | 1 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐴  ∈  ℝ ) | 
						
							| 133 | 131 132 | remulcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 134 | 95 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ≠  0 ) | 
						
							| 135 | 130 133 134 | redivcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 136 |  | oveq1 | ⊢ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( 𝑥 ↑ 2 )  =  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ↑ 2 ) ) | 
						
							| 137 | 136 | oveq2d | ⊢ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  =  ( 𝐴  ·  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ↑ 2 ) ) ) | 
						
							| 138 |  | oveq2 | ⊢ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( 𝐵  ·  𝑥 )  =  ( 𝐵  ·  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 139 | 138 | oveq1d | ⊢ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( ( 𝐵  ·  𝑥 )  +  𝐶 )  =  ( ( 𝐵  ·  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  +  𝐶 ) ) | 
						
							| 140 | 137 139 | oveq12d | ⊢ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  ( ( 𝐴  ·  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ↑ 2 ) )  +  ( ( 𝐵  ·  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  +  𝐶 ) ) ) | 
						
							| 141 | 140 | eqeq1d | ⊢ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( ( 𝐴  ·  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ↑ 2 ) )  +  ( ( 𝐵  ·  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  +  𝐶 ) )  =  0 ) ) | 
						
							| 142 | 141 | adantl | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( ( 𝐴  ·  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ↑ 2 ) )  +  ( ( 𝐵  ·  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  +  𝐶 ) )  =  0 ) ) | 
						
							| 143 |  | eqidd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) | 
						
							| 144 | 143 | orcd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 145 | 6 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐴  ∈  ℂ ) | 
						
							| 146 | 2 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐴  ≠  0 ) | 
						
							| 147 | 9 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐵  ∈  ℂ ) | 
						
							| 148 | 11 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐶  ∈  ℂ ) | 
						
							| 149 | 92 6 | mulcld | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℂ ) | 
						
							| 150 | 33 149 95 | divcld | ⊢ ( 𝜑  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 151 | 150 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 152 | 5 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  𝐷  =  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 153 | 145 146 147 148 151 152 | quad | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( ( 𝐴  ·  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ↑ 2 ) )  +  ( ( 𝐵  ·  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  +  𝐶 ) )  =  0  ↔  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 154 | 144 153 | mpbird | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( 𝐴  ·  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ↑ 2 ) )  +  ( ( 𝐵  ·  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  +  𝐶 ) )  =  0 ) | 
						
							| 155 | 135 142 154 | rspcedvd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ∃ 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) | 
						
							| 156 | 155 | ex | ⊢ ( 𝜑  →  ( 0  ≤  𝐷  →  ∃ 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 157 | 125 156 | impbid | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  0  ≤  𝐷 ) ) |