| Step | Hyp | Ref | Expression | 
						
							| 1 |  | requad2.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | requad2.z | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 3 |  | requad2.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | requad2.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 5 |  | requad2.d | ⊢ ( 𝜑  →  𝐷  =  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 6 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑥  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑥  ∈  ℝ )  →  𝐴  ≠  0 ) | 
						
							| 9 | 3 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑥  ∈  ℝ )  →  𝐵  ∈  ℂ ) | 
						
							| 11 | 4 | recnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑥  ∈  ℝ )  →  𝐶  ∈  ℂ ) | 
						
							| 13 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 15 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑥  ∈  ℝ )  →  𝐷  =  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 16 | 7 8 10 12 14 15 | quad | ⊢ ( ( ( 𝜑  ∧  0  ≤  𝐷 )  ∧  𝑥  ∈  ℝ )  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 17 | 16 | reubidva | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ∃! 𝑥  ∈  ℝ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 18 | 3 | renegcld | ⊢ ( 𝜑  →  - 𝐵  ∈  ℝ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 20 | 3 | resqcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℝ ) | 
						
							| 21 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  4  ∈  ℝ ) | 
						
							| 23 | 1 4 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐶 )  ∈  ℝ ) | 
						
							| 24 | 22 23 | remulcld | ⊢ ( 𝜑  →  ( 4  ·  ( 𝐴  ·  𝐶 ) )  ∈  ℝ ) | 
						
							| 25 | 20 24 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) )  ∈  ℝ ) | 
						
							| 26 | 5 25 | eqeltrd | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 27 |  | resqrtcl | ⊢ ( ( 𝐷  ∈  ℝ  ∧  0  ≤  𝐷 )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 28 | 26 27 | sylan | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 29 | 19 28 | readdcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 30 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 32 | 31 1 | remulcld | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 34 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 35 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 37 | 34 6 36 2 | mulne0d | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ≠  0 ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ≠  0 ) | 
						
							| 39 | 29 33 38 | redivcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 40 | 19 28 | resubcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 41 | 40 33 38 | redivcld | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 42 |  | euoreqb | ⊢ ( ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ  ∧  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℝ )  →  ( ∃! 𝑥  ∈  ℝ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  ↔  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 43 | 39 41 42 | syl2anc | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ∃! 𝑥  ∈  ℝ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  ↔  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 44 | 9 | negcld | ⊢ ( 𝜑  →  - 𝐵  ∈  ℂ ) | 
						
							| 45 | 26 | recnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 46 | 45 | sqrtcld | ⊢ ( 𝜑  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 47 | 32 | recnd | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℂ ) | 
						
							| 48 | 44 46 47 37 | divdird | ⊢ ( 𝜑  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 50 | 44 46 47 37 | divsubdird | ⊢ ( 𝜑  →  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  −  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  −  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 52 | 44 47 37 | divcld | ⊢ ( 𝜑  →  ( - 𝐵  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( - 𝐵  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 54 | 46 47 37 | divcld | ⊢ ( 𝜑  →  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 56 | 53 55 | negsubd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  - ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  −  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 57 | 46 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 58 | 47 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( 2  ·  𝐴 )  ∈  ℂ ) | 
						
							| 59 | 57 58 38 | divnegd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  - ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  =  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  - ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 61 | 51 56 60 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 62 | 49 61 | eqeq12d | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 63 | 46 | negcld | ⊢ ( 𝜑  →  - ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 64 | 63 47 37 | divcld | ⊢ ( 𝜑  →  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 66 | 53 55 65 | addcand | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  ↔  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  =  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 67 |  | div11 | ⊢ ( ( ( √ ‘ 𝐷 )  ∈  ℂ  ∧  - ( √ ‘ 𝐷 )  ∈  ℂ  ∧  ( ( 2  ·  𝐴 )  ∈  ℂ  ∧  ( 2  ·  𝐴 )  ≠  0 ) )  →  ( ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  =  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ↔  ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 68 | 46 63 47 37 67 | syl112anc | ⊢ ( 𝜑  →  ( ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  =  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ↔  ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  =  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ↔  ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 70 | 57 | eqnegd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 )  ↔  ( √ ‘ 𝐷 )  =  0 ) ) | 
						
							| 71 |  | sqrt00 | ⊢ ( ( 𝐷  ∈  ℝ  ∧  0  ≤  𝐷 )  →  ( ( √ ‘ 𝐷 )  =  0  ↔  𝐷  =  0 ) ) | 
						
							| 72 | 26 71 | sylan | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( √ ‘ 𝐷 )  =  0  ↔  𝐷  =  0 ) ) | 
						
							| 73 | 70 72 | bitrd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 )  ↔  𝐷  =  0 ) ) | 
						
							| 74 | 66 69 73 | 3bitrd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  ↔  𝐷  =  0 ) ) | 
						
							| 75 | 62 74 | bitrd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  𝐷  =  0 ) ) | 
						
							| 76 | 17 43 75 | 3bitrd | ⊢ ( ( 𝜑  ∧  0  ≤  𝐷 )  →  ( ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  𝐷  =  0 ) ) | 
						
							| 77 | 76 | expcom | ⊢ ( 0  ≤  𝐷  →  ( 𝜑  →  ( ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  𝐷  =  0 ) ) ) | 
						
							| 78 | 1 2 3 4 5 | requad01 | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  0  ≤  𝐷 ) ) | 
						
							| 79 | 78 | notbid | ⊢ ( 𝜑  →  ( ¬  ∃ 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ¬  0  ≤  𝐷 ) ) | 
						
							| 80 | 79 | biimparc | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ¬  ∃ 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) | 
						
							| 81 |  | reurex | ⊢ ( ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  →  ∃ 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) | 
						
							| 82 | 80 81 | nsyl | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ¬  ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) | 
						
							| 83 | 82 | pm2.21d | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ( ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  →  𝐷  =  0 ) ) | 
						
							| 84 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 85 | 26 84 | ltnled | ⊢ ( 𝜑  →  ( 𝐷  <  0  ↔  ¬  0  ≤  𝐷 ) ) | 
						
							| 86 | 85 | biimparc | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  𝐷  <  0 ) | 
						
							| 87 | 86 | lt0ne0d | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  𝐷  ≠  0 ) | 
						
							| 88 |  | eqneqall | ⊢ ( 𝐷  =  0  →  ( 𝐷  ≠  0  →  ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 89 | 87 88 | syl5com | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ( 𝐷  =  0  →  ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0 ) ) | 
						
							| 90 | 83 89 | impbid | ⊢ ( ( ¬  0  ≤  𝐷  ∧  𝜑 )  →  ( ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  𝐷  =  0 ) ) | 
						
							| 91 | 90 | ex | ⊢ ( ¬  0  ≤  𝐷  →  ( 𝜑  →  ( ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  𝐷  =  0 ) ) ) | 
						
							| 92 | 77 91 | pm2.61i | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  ℝ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  𝐷  =  0 ) ) |