| Step | Hyp | Ref | Expression | 
						
							| 1 |  | requad2.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | requad2.z |  |-  ( ph -> A =/= 0 ) | 
						
							| 3 |  | requad2.b |  |-  ( ph -> B e. RR ) | 
						
							| 4 |  | requad2.c |  |-  ( ph -> C e. RR ) | 
						
							| 5 |  | requad2.d |  |-  ( ph -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) | 
						
							| 6 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 7 | 6 | ad2antrr |  |-  ( ( ( ph /\ 0 <_ D ) /\ x e. RR ) -> A e. CC ) | 
						
							| 8 | 2 | ad2antrr |  |-  ( ( ( ph /\ 0 <_ D ) /\ x e. RR ) -> A =/= 0 ) | 
						
							| 9 | 3 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( ph /\ 0 <_ D ) /\ x e. RR ) -> B e. CC ) | 
						
							| 11 | 4 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( ph /\ 0 <_ D ) /\ x e. RR ) -> C e. CC ) | 
						
							| 13 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ph /\ 0 <_ D ) /\ x e. RR ) -> x e. CC ) | 
						
							| 15 | 5 | ad2antrr |  |-  ( ( ( ph /\ 0 <_ D ) /\ x e. RR ) -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) | 
						
							| 16 | 7 8 10 12 14 15 | quad |  |-  ( ( ( ph /\ 0 <_ D ) /\ x e. RR ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 17 | 16 | reubidva |  |-  ( ( ph /\ 0 <_ D ) -> ( E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> E! x e. RR ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) | 
						
							| 18 | 3 | renegcld |  |-  ( ph -> -u B e. RR ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> -u B e. RR ) | 
						
							| 20 | 3 | resqcld |  |-  ( ph -> ( B ^ 2 ) e. RR ) | 
						
							| 21 |  | 4re |  |-  4 e. RR | 
						
							| 22 | 21 | a1i |  |-  ( ph -> 4 e. RR ) | 
						
							| 23 | 1 4 | remulcld |  |-  ( ph -> ( A x. C ) e. RR ) | 
						
							| 24 | 22 23 | remulcld |  |-  ( ph -> ( 4 x. ( A x. C ) ) e. RR ) | 
						
							| 25 | 20 24 | resubcld |  |-  ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. RR ) | 
						
							| 26 | 5 25 | eqeltrd |  |-  ( ph -> D e. RR ) | 
						
							| 27 |  | resqrtcl |  |-  ( ( D e. RR /\ 0 <_ D ) -> ( sqrt ` D ) e. RR ) | 
						
							| 28 | 26 27 | sylan |  |-  ( ( ph /\ 0 <_ D ) -> ( sqrt ` D ) e. RR ) | 
						
							| 29 | 19 28 | readdcld |  |-  ( ( ph /\ 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e. RR ) | 
						
							| 30 |  | 2re |  |-  2 e. RR | 
						
							| 31 | 30 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 32 | 31 1 | remulcld |  |-  ( ph -> ( 2 x. A ) e. RR ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) e. RR ) | 
						
							| 34 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 35 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 36 | 35 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 37 | 34 6 36 2 | mulne0d |  |-  ( ph -> ( 2 x. A ) =/= 0 ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) =/= 0 ) | 
						
							| 39 | 29 33 38 | redivcld |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) | 
						
							| 40 | 19 28 | resubcld |  |-  ( ( ph /\ 0 <_ D ) -> ( -u B - ( sqrt ` D ) ) e. RR ) | 
						
							| 41 | 40 33 38 | redivcld |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) | 
						
							| 42 |  | euoreqb |  |-  ( ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR /\ ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) -> ( E! x e. RR ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) | 
						
							| 43 | 39 41 42 | syl2anc |  |-  ( ( ph /\ 0 <_ D ) -> ( E! x e. RR ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) | 
						
							| 44 | 9 | negcld |  |-  ( ph -> -u B e. CC ) | 
						
							| 45 | 26 | recnd |  |-  ( ph -> D e. CC ) | 
						
							| 46 | 45 | sqrtcld |  |-  ( ph -> ( sqrt ` D ) e. CC ) | 
						
							| 47 | 32 | recnd |  |-  ( ph -> ( 2 x. A ) e. CC ) | 
						
							| 48 | 44 46 47 37 | divdird |  |-  ( ph -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 50 | 44 46 47 37 | divsubdird |  |-  ( ph -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) - ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) - ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 52 | 44 47 37 | divcld |  |-  ( ph -> ( -u B / ( 2 x. A ) ) e. CC ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( -u B / ( 2 x. A ) ) e. CC ) | 
						
							| 54 | 46 47 37 | divcld |  |-  ( ph -> ( ( sqrt ` D ) / ( 2 x. A ) ) e. CC ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( ( sqrt ` D ) / ( 2 x. A ) ) e. CC ) | 
						
							| 56 | 53 55 | negsubd |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B / ( 2 x. A ) ) + -u ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) - ( ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 57 | 46 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( sqrt ` D ) e. CC ) | 
						
							| 58 | 47 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) e. CC ) | 
						
							| 59 | 57 58 38 | divnegd |  |-  ( ( ph /\ 0 <_ D ) -> -u ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) | 
						
							| 60 | 59 | oveq2d |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B / ( 2 x. A ) ) + -u ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 61 | 51 56 60 | 3eqtr2d |  |-  ( ( ph /\ 0 <_ D ) -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 62 | 49 61 | eqeq12d |  |-  ( ( ph /\ 0 <_ D ) -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) ) | 
						
							| 63 | 46 | negcld |  |-  ( ph -> -u ( sqrt ` D ) e. CC ) | 
						
							| 64 | 63 47 37 | divcld |  |-  ( ph -> ( -u ( sqrt ` D ) / ( 2 x. A ) ) e. CC ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( -u ( sqrt ` D ) / ( 2 x. A ) ) e. CC ) | 
						
							| 66 | 53 55 65 | addcand |  |-  ( ( ph /\ 0 <_ D ) -> ( ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) <-> ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) ) | 
						
							| 67 |  | div11 |  |-  ( ( ( sqrt ` D ) e. CC /\ -u ( sqrt ` D ) e. CC /\ ( ( 2 x. A ) e. CC /\ ( 2 x. A ) =/= 0 ) ) -> ( ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) <-> ( sqrt ` D ) = -u ( sqrt ` D ) ) ) | 
						
							| 68 | 46 63 47 37 67 | syl112anc |  |-  ( ph -> ( ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) <-> ( sqrt ` D ) = -u ( sqrt ` D ) ) ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ph /\ 0 <_ D ) -> ( ( ( sqrt ` D ) / ( 2 x. A ) ) = ( -u ( sqrt ` D ) / ( 2 x. A ) ) <-> ( sqrt ` D ) = -u ( sqrt ` D ) ) ) | 
						
							| 70 | 57 | eqnegd |  |-  ( ( ph /\ 0 <_ D ) -> ( ( sqrt ` D ) = -u ( sqrt ` D ) <-> ( sqrt ` D ) = 0 ) ) | 
						
							| 71 |  | sqrt00 |  |-  ( ( D e. RR /\ 0 <_ D ) -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) | 
						
							| 72 | 26 71 | sylan |  |-  ( ( ph /\ 0 <_ D ) -> ( ( sqrt ` D ) = 0 <-> D = 0 ) ) | 
						
							| 73 | 70 72 | bitrd |  |-  ( ( ph /\ 0 <_ D ) -> ( ( sqrt ` D ) = -u ( sqrt ` D ) <-> D = 0 ) ) | 
						
							| 74 | 66 69 73 | 3bitrd |  |-  ( ( ph /\ 0 <_ D ) -> ( ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` D ) / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` D ) / ( 2 x. A ) ) ) <-> D = 0 ) ) | 
						
							| 75 | 62 74 | bitrd |  |-  ( ( ph /\ 0 <_ D ) -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) <-> D = 0 ) ) | 
						
							| 76 | 17 43 75 | 3bitrd |  |-  ( ( ph /\ 0 <_ D ) -> ( E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> D = 0 ) ) | 
						
							| 77 | 76 | expcom |  |-  ( 0 <_ D -> ( ph -> ( E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> D = 0 ) ) ) | 
						
							| 78 | 1 2 3 4 5 | requad01 |  |-  ( ph -> ( E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> 0 <_ D ) ) | 
						
							| 79 | 78 | notbid |  |-  ( ph -> ( -. E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> -. 0 <_ D ) ) | 
						
							| 80 | 79 | biimparc |  |-  ( ( -. 0 <_ D /\ ph ) -> -. E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) | 
						
							| 81 |  | reurex |  |-  ( E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) | 
						
							| 82 | 80 81 | nsyl |  |-  ( ( -. 0 <_ D /\ ph ) -> -. E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) | 
						
							| 83 | 82 | pm2.21d |  |-  ( ( -. 0 <_ D /\ ph ) -> ( E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> D = 0 ) ) | 
						
							| 84 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 85 | 26 84 | ltnled |  |-  ( ph -> ( D < 0 <-> -. 0 <_ D ) ) | 
						
							| 86 | 85 | biimparc |  |-  ( ( -. 0 <_ D /\ ph ) -> D < 0 ) | 
						
							| 87 | 86 | lt0ne0d |  |-  ( ( -. 0 <_ D /\ ph ) -> D =/= 0 ) | 
						
							| 88 |  | eqneqall |  |-  ( D = 0 -> ( D =/= 0 -> E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) | 
						
							| 89 | 87 88 | syl5com |  |-  ( ( -. 0 <_ D /\ ph ) -> ( D = 0 -> E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) | 
						
							| 90 | 83 89 | impbid |  |-  ( ( -. 0 <_ D /\ ph ) -> ( E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> D = 0 ) ) | 
						
							| 91 | 90 | ex |  |-  ( -. 0 <_ D -> ( ph -> ( E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> D = 0 ) ) ) | 
						
							| 92 | 77 91 | pm2.61i |  |-  ( ph -> ( E! x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> D = 0 ) ) |