Metamath Proof Explorer


Theorem readdcnnred

Description: The sum of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023)

Ref Expression
Hypotheses recnaddnred.a φA
recnaddnred.b φB
Assertion readdcnnred φA+B

Proof

Step Hyp Ref Expression
1 recnaddnred.a φA
2 recnaddnred.b φB
3 2 eldifbd φ¬B
4 df-nel A+B¬A+B
5 1 recnd φA
6 2 eldifad φB
7 5 6 addcld φA+B
8 reim0b A+BA+BA+B=0
9 7 8 syl φA+BA+B=0
10 1 reim0d φA=0
11 10 oveq1d φA+B=0+B
12 6 imcld φB
13 12 recnd φB
14 13 addlidd φ0+B=B
15 11 14 eqtrd φA+B=B
16 15 eqeq1d φA+B=0B=0
17 5 6 imaddd φA+B=A+B
18 17 eqeq1d φA+B=0A+B=0
19 reim0b BBB=0
20 6 19 syl φBB=0
21 16 18 20 3bitr4d φA+B=0B
22 9 21 bitrd φA+BB
23 22 notbid φ¬A+B¬B
24 4 23 bitrid φA+B¬B
25 3 24 mpbird φA+B