| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quad1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | quad1.z | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 3 |  | quad1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | quad1.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | quad1.d | ⊢ ( 𝜑  →  𝐷  =  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 6 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝐴  ≠  0 ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 9 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝐶  ∈  ℂ ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝑥  ∈  ℂ ) | 
						
							| 11 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝐷  =  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) ) ) | 
						
							| 12 | 6 7 8 9 10 11 | quad | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 13 | 12 | reubidva | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  ℂ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  ∃! 𝑥  ∈  ℂ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 14 | 3 | negcld | ⊢ ( 𝜑  →  - 𝐵  ∈  ℂ ) | 
						
							| 15 | 3 | sqcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 16 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  4  ∈  ℂ ) | 
						
							| 18 | 1 4 | mulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐶 )  ∈  ℂ ) | 
						
							| 19 | 17 18 | mulcld | ⊢ ( 𝜑  →  ( 4  ·  ( 𝐴  ·  𝐶 ) )  ∈  ℂ ) | 
						
							| 20 | 15 19 | subcld | ⊢ ( 𝜑  →  ( ( 𝐵 ↑ 2 )  −  ( 4  ·  ( 𝐴  ·  𝐶 ) ) )  ∈  ℂ ) | 
						
							| 21 | 5 20 | eqeltrd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 22 | 21 | sqrtcld | ⊢ ( 𝜑  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 23 | 14 22 | addcld | ⊢ ( 𝜑  →  ( - 𝐵  +  ( √ ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 24 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 25 | 24 1 | mulcld | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℂ ) | 
						
							| 26 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 28 | 24 1 27 2 | mulne0d | ⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ≠  0 ) | 
						
							| 29 | 23 25 28 | divcld | ⊢ ( 𝜑  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 30 | 14 22 | subcld | ⊢ ( 𝜑  →  ( - 𝐵  −  ( √ ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 31 | 30 25 28 | divcld | ⊢ ( 𝜑  →  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 32 |  | euoreqb | ⊢ ( ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℂ  ∧  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∈  ℂ )  →  ( ∃! 𝑥  ∈  ℂ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  ↔  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 33 | 29 31 32 | syl2anc | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  ℂ ( 𝑥  =  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ∨  𝑥  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) )  ↔  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 34 | 14 22 25 28 | divdird | ⊢ ( 𝜑  →  ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 35 | 14 22 25 28 | divsubdird | ⊢ ( 𝜑  →  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  −  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 36 | 14 25 28 | divcld | ⊢ ( 𝜑  →  ( - 𝐵  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 37 | 22 25 28 | divcld | ⊢ ( 𝜑  →  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 38 | 36 37 | negsubd | ⊢ ( 𝜑  →  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  - ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  −  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 39 | 22 25 28 | divnegd | ⊢ ( 𝜑  →  - ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  =  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝜑  →  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  - ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 41 | 35 38 40 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 42 | 34 41 | eqeq12d | ⊢ ( 𝜑  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) ) | 
						
							| 43 | 22 | negcld | ⊢ ( 𝜑  →  - ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 44 | 43 25 28 | divcld | ⊢ ( 𝜑  →  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 45 | 36 37 44 | addcand | ⊢ ( 𝜑  →  ( ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  ↔  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  =  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 46 |  | div11 | ⊢ ( ( ( √ ‘ 𝐷 )  ∈  ℂ  ∧  - ( √ ‘ 𝐷 )  ∈  ℂ  ∧  ( ( 2  ·  𝐴 )  ∈  ℂ  ∧  ( 2  ·  𝐴 )  ≠  0 ) )  →  ( ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  =  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ↔  ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 47 | 22 43 25 28 46 | syl112anc | ⊢ ( 𝜑  →  ( ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  =  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) )  ↔  ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 ) ) ) | 
						
							| 48 | 22 | eqnegd | ⊢ ( 𝜑  →  ( ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 )  ↔  ( √ ‘ 𝐷 )  =  0 ) ) | 
						
							| 49 |  | cnsqrt00 | ⊢ ( 𝐷  ∈  ℂ  →  ( ( √ ‘ 𝐷 )  =  0  ↔  𝐷  =  0 ) ) | 
						
							| 50 | 21 49 | syl | ⊢ ( 𝜑  →  ( ( √ ‘ 𝐷 )  =  0  ↔  𝐷  =  0 ) ) | 
						
							| 51 | 48 50 | bitrd | ⊢ ( 𝜑  →  ( ( √ ‘ 𝐷 )  =  - ( √ ‘ 𝐷 )  ↔  𝐷  =  0 ) ) | 
						
							| 52 | 45 47 51 | 3bitrd | ⊢ ( 𝜑  →  ( ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  =  ( ( - 𝐵  /  ( 2  ·  𝐴 ) )  +  ( - ( √ ‘ 𝐷 )  /  ( 2  ·  𝐴 ) ) )  ↔  𝐷  =  0 ) ) | 
						
							| 53 | 42 52 | bitrd | ⊢ ( 𝜑  →  ( ( ( - 𝐵  +  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  =  ( ( - 𝐵  −  ( √ ‘ 𝐷 ) )  /  ( 2  ·  𝐴 ) )  ↔  𝐷  =  0 ) ) | 
						
							| 54 | 13 33 53 | 3bitrd | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  ℂ ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( ( 𝐵  ·  𝑥 )  +  𝐶 ) )  =  0  ↔  𝐷  =  0 ) ) |