Step |
Hyp |
Ref |
Expression |
1 |
|
quad1.a |
|
2 |
|
quad1.z |
|
3 |
|
quad1.b |
|
4 |
|
quad1.c |
|
5 |
|
quad1.d |
|
6 |
1
|
adantr |
|
7 |
2
|
adantr |
|
8 |
3
|
adantr |
|
9 |
4
|
adantr |
|
10 |
|
simpr |
|
11 |
5
|
adantr |
|
12 |
6 7 8 9 10 11
|
quad |
|
13 |
12
|
reubidva |
|
14 |
3
|
negcld |
|
15 |
3
|
sqcld |
|
16 |
|
4cn |
|
17 |
16
|
a1i |
|
18 |
1 4
|
mulcld |
|
19 |
17 18
|
mulcld |
|
20 |
15 19
|
subcld |
|
21 |
5 20
|
eqeltrd |
|
22 |
21
|
sqrtcld |
|
23 |
14 22
|
addcld |
|
24 |
|
2cnd |
|
25 |
24 1
|
mulcld |
|
26 |
|
2ne0 |
|
27 |
26
|
a1i |
|
28 |
24 1 27 2
|
mulne0d |
|
29 |
23 25 28
|
divcld |
|
30 |
14 22
|
subcld |
|
31 |
30 25 28
|
divcld |
|
32 |
|
euoreqb |
|
33 |
29 31 32
|
syl2anc |
|
34 |
14 22 25 28
|
divdird |
|
35 |
14 22 25 28
|
divsubdird |
|
36 |
14 25 28
|
divcld |
|
37 |
22 25 28
|
divcld |
|
38 |
36 37
|
negsubd |
|
39 |
22 25 28
|
divnegd |
|
40 |
39
|
oveq2d |
|
41 |
35 38 40
|
3eqtr2d |
|
42 |
34 41
|
eqeq12d |
|
43 |
22
|
negcld |
|
44 |
43 25 28
|
divcld |
|
45 |
36 37 44
|
addcand |
|
46 |
|
div11 |
|
47 |
22 43 25 28 46
|
syl112anc |
|
48 |
22
|
eqnegd |
|
49 |
|
cnsqrt00 |
|
50 |
21 49
|
syl |
|
51 |
48 50
|
bitrd |
|
52 |
45 47 51
|
3bitrd |
|
53 |
42 52
|
bitrd |
|
54 |
13 33 53
|
3bitrd |
|