| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quad1.a |
|
| 2 |
|
quad1.z |
|
| 3 |
|
quad1.b |
|
| 4 |
|
quad1.c |
|
| 5 |
|
quad1.d |
|
| 6 |
1
|
adantr |
|
| 7 |
2
|
adantr |
|
| 8 |
3
|
adantr |
|
| 9 |
4
|
adantr |
|
| 10 |
|
simpr |
|
| 11 |
5
|
adantr |
|
| 12 |
6 7 8 9 10 11
|
quad |
|
| 13 |
12
|
reubidva |
|
| 14 |
3
|
negcld |
|
| 15 |
3
|
sqcld |
|
| 16 |
|
4cn |
|
| 17 |
16
|
a1i |
|
| 18 |
1 4
|
mulcld |
|
| 19 |
17 18
|
mulcld |
|
| 20 |
15 19
|
subcld |
|
| 21 |
5 20
|
eqeltrd |
|
| 22 |
21
|
sqrtcld |
|
| 23 |
14 22
|
addcld |
|
| 24 |
|
2cnd |
|
| 25 |
24 1
|
mulcld |
|
| 26 |
|
2ne0 |
|
| 27 |
26
|
a1i |
|
| 28 |
24 1 27 2
|
mulne0d |
|
| 29 |
23 25 28
|
divcld |
|
| 30 |
14 22
|
subcld |
|
| 31 |
30 25 28
|
divcld |
|
| 32 |
|
euoreqb |
|
| 33 |
29 31 32
|
syl2anc |
|
| 34 |
14 22 25 28
|
divdird |
|
| 35 |
14 22 25 28
|
divsubdird |
|
| 36 |
14 25 28
|
divcld |
|
| 37 |
22 25 28
|
divcld |
|
| 38 |
36 37
|
negsubd |
|
| 39 |
22 25 28
|
divnegd |
|
| 40 |
39
|
oveq2d |
|
| 41 |
35 38 40
|
3eqtr2d |
|
| 42 |
34 41
|
eqeq12d |
|
| 43 |
22
|
negcld |
|
| 44 |
43 25 28
|
divcld |
|
| 45 |
36 37 44
|
addcand |
|
| 46 |
|
div11 |
|
| 47 |
22 43 25 28 46
|
syl112anc |
|
| 48 |
22
|
eqnegd |
|
| 49 |
|
cnsqrt00 |
|
| 50 |
21 49
|
syl |
|
| 51 |
48 50
|
bitrd |
|
| 52 |
45 47 51
|
3bitrd |
|
| 53 |
42 52
|
bitrd |
|
| 54 |
13 33 53
|
3bitrd |
|