Step |
Hyp |
Ref |
Expression |
1 |
|
sadasslem.1 |
|- ( ph -> A C_ NN0 ) |
2 |
|
sadasslem.2 |
|- ( ph -> B C_ NN0 ) |
3 |
|
sadasslem.3 |
|- ( ph -> C C_ NN0 ) |
4 |
|
sadasslem.4 |
|- ( ph -> N e. NN0 ) |
5 |
|
inss1 |
|- ( A i^i ( 0 ..^ N ) ) C_ A |
6 |
5 1
|
sstrid |
|- ( ph -> ( A i^i ( 0 ..^ N ) ) C_ NN0 ) |
7 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
8 |
7
|
a1i |
|- ( ph -> ( 0 ..^ N ) e. Fin ) |
9 |
|
inss2 |
|- ( A i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
10 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( A i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( A i^i ( 0 ..^ N ) ) e. Fin ) |
11 |
8 9 10
|
sylancl |
|- ( ph -> ( A i^i ( 0 ..^ N ) ) e. Fin ) |
12 |
|
elfpw |
|- ( ( A i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( A i^i ( 0 ..^ N ) ) C_ NN0 /\ ( A i^i ( 0 ..^ N ) ) e. Fin ) ) |
13 |
6 11 12
|
sylanbrc |
|- ( ph -> ( A i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
14 |
|
bitsf1o |
|- ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) |
15 |
|
f1ocnv |
|- ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
16 |
|
f1of |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 ) |
17 |
14 15 16
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 |
18 |
17
|
ffvelrni |
|- ( ( A i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) e. NN0 ) |
19 |
13 18
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) e. NN0 ) |
20 |
19
|
nn0cnd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) e. CC ) |
21 |
|
inss1 |
|- ( B i^i ( 0 ..^ N ) ) C_ B |
22 |
21 2
|
sstrid |
|- ( ph -> ( B i^i ( 0 ..^ N ) ) C_ NN0 ) |
23 |
|
inss2 |
|- ( B i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
24 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( B i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( B i^i ( 0 ..^ N ) ) e. Fin ) |
25 |
8 23 24
|
sylancl |
|- ( ph -> ( B i^i ( 0 ..^ N ) ) e. Fin ) |
26 |
|
elfpw |
|- ( ( B i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( B i^i ( 0 ..^ N ) ) C_ NN0 /\ ( B i^i ( 0 ..^ N ) ) e. Fin ) ) |
27 |
22 25 26
|
sylanbrc |
|- ( ph -> ( B i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
28 |
17
|
ffvelrni |
|- ( ( B i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) e. NN0 ) |
29 |
27 28
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) e. NN0 ) |
30 |
29
|
nn0cnd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) e. CC ) |
31 |
|
inss1 |
|- ( C i^i ( 0 ..^ N ) ) C_ C |
32 |
31 3
|
sstrid |
|- ( ph -> ( C i^i ( 0 ..^ N ) ) C_ NN0 ) |
33 |
|
inss2 |
|- ( C i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
34 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( C i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( C i^i ( 0 ..^ N ) ) e. Fin ) |
35 |
8 33 34
|
sylancl |
|- ( ph -> ( C i^i ( 0 ..^ N ) ) e. Fin ) |
36 |
|
elfpw |
|- ( ( C i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( C i^i ( 0 ..^ N ) ) C_ NN0 /\ ( C i^i ( 0 ..^ N ) ) e. Fin ) ) |
37 |
32 35 36
|
sylanbrc |
|- ( ph -> ( C i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
38 |
17
|
ffvelrni |
|- ( ( C i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) e. NN0 ) |
39 |
37 38
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) e. NN0 ) |
40 |
39
|
nn0cnd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) e. CC ) |
41 |
20 30 40
|
addassd |
|- ( ph -> ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) = ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) ) ) |
42 |
41
|
oveq1d |
|- ( ph -> ( ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) ) mod ( 2 ^ N ) ) ) |
43 |
|
inss1 |
|- ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( A sadd B ) |
44 |
|
sadcl |
|- ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A sadd B ) C_ NN0 ) |
45 |
1 2 44
|
syl2anc |
|- ( ph -> ( A sadd B ) C_ NN0 ) |
46 |
43 45
|
sstrid |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
47 |
|
inss2 |
|- ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
48 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) |
49 |
8 47 48
|
sylancl |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) |
50 |
|
elfpw |
|- ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
51 |
46 49 50
|
sylanbrc |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
52 |
17
|
ffvelrni |
|- ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
53 |
51 52
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
54 |
53
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. RR ) |
55 |
19
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) e. RR ) |
56 |
29
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) e. RR ) |
57 |
55 56
|
readdcld |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) e. RR ) |
58 |
39
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) e. RR ) |
59 |
|
2rp |
|- 2 e. RR+ |
60 |
59
|
a1i |
|- ( ph -> 2 e. RR+ ) |
61 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
62 |
60 61
|
rpexpcld |
|- ( ph -> ( 2 ^ N ) e. RR+ ) |
63 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
64 |
|
eqid |
|- `' ( bits |` NN0 ) = `' ( bits |` NN0 ) |
65 |
1 2 63 4 64
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
66 |
|
eqidd |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) ) |
67 |
54 57 58 58 62 65 66
|
modadd12d |
|- ( ph -> ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
68 |
|
inss1 |
|- ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ ( B sadd C ) |
69 |
|
sadcl |
|- ( ( B C_ NN0 /\ C C_ NN0 ) -> ( B sadd C ) C_ NN0 ) |
70 |
2 3 69
|
syl2anc |
|- ( ph -> ( B sadd C ) C_ NN0 ) |
71 |
68 70
|
sstrid |
|- ( ph -> ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
72 |
|
inss2 |
|- ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
73 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) |
74 |
8 72 73
|
sylancl |
|- ( ph -> ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) |
75 |
|
elfpw |
|- ( ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
76 |
71 74 75
|
sylanbrc |
|- ( ph -> ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
77 |
17
|
ffvelrni |
|- ( ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
78 |
76 77
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
79 |
78
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) e. RR ) |
80 |
56 58
|
readdcld |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) e. RR ) |
81 |
|
eqidd |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) ) |
82 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. B , m e. C , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. B , m e. C , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
83 |
2 3 82 4 64
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
84 |
55 55 79 80 62 81 83
|
modadd12d |
|- ( ph -> ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) ) mod ( 2 ^ N ) ) ) |
85 |
42 67 84
|
3eqtr4d |
|- ( ph -> ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
86 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( A sadd B ) , m e. C , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( A sadd B ) , m e. C , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
87 |
45 3 86 4 64
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
88 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. ( B sadd C ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. ( B sadd C ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
89 |
1 70 88 4 64
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
90 |
85 87 89
|
3eqtr4d |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) ) |
91 |
|
inss1 |
|- ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ ( ( A sadd B ) sadd C ) |
92 |
|
sadcl |
|- ( ( ( A sadd B ) C_ NN0 /\ C C_ NN0 ) -> ( ( A sadd B ) sadd C ) C_ NN0 ) |
93 |
45 3 92
|
syl2anc |
|- ( ph -> ( ( A sadd B ) sadd C ) C_ NN0 ) |
94 |
91 93
|
sstrid |
|- ( ph -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
95 |
|
inss2 |
|- ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
96 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) |
97 |
8 95 96
|
sylancl |
|- ( ph -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) |
98 |
|
elfpw |
|- ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
99 |
94 97 98
|
sylanbrc |
|- ( ph -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
100 |
17
|
ffvelrni |
|- ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
101 |
99 100
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
102 |
101
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. RR ) |
103 |
101
|
nn0ge0d |
|- ( ph -> 0 <_ ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) |
104 |
101
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) ) |
105 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) |
106 |
14 99 105
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) |
107 |
104 106
|
eqtr3d |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) |
108 |
107 95
|
eqsstrdi |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
109 |
101
|
nn0zd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
110 |
|
bitsfzo |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
111 |
109 4 110
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
112 |
108 111
|
mpbird |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
113 |
|
elfzolt2 |
|- ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
114 |
112 113
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
115 |
|
modid |
|- ( ( ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) /\ ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) |
116 |
102 62 103 114 115
|
syl22anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) |
117 |
|
inss1 |
|- ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ ( A sadd ( B sadd C ) ) |
118 |
|
sadcl |
|- ( ( A C_ NN0 /\ ( B sadd C ) C_ NN0 ) -> ( A sadd ( B sadd C ) ) C_ NN0 ) |
119 |
1 70 118
|
syl2anc |
|- ( ph -> ( A sadd ( B sadd C ) ) C_ NN0 ) |
120 |
117 119
|
sstrid |
|- ( ph -> ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
121 |
|
inss2 |
|- ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
122 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
123 |
8 121 122
|
sylancl |
|- ( ph -> ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
124 |
|
elfpw |
|- ( ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
125 |
120 123 124
|
sylanbrc |
|- ( ph -> ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
126 |
17
|
ffvelrni |
|- ( ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
127 |
125 126
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
128 |
127
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. RR ) |
129 |
|
2nn |
|- 2 e. NN |
130 |
129
|
a1i |
|- ( ph -> 2 e. NN ) |
131 |
130 4
|
nnexpcld |
|- ( ph -> ( 2 ^ N ) e. NN ) |
132 |
131
|
nnrpd |
|- ( ph -> ( 2 ^ N ) e. RR+ ) |
133 |
127
|
nn0ge0d |
|- ( ph -> 0 <_ ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
134 |
127
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) ) |
135 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) |
136 |
14 125 135
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) |
137 |
134 136
|
eqtr3d |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) |
138 |
137 121
|
eqsstrdi |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
139 |
127
|
nn0zd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
140 |
|
bitsfzo |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
141 |
139 4 140
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
142 |
138 141
|
mpbird |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
143 |
|
elfzolt2 |
|- ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
144 |
142 143
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
145 |
|
modid |
|- ( ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) /\ ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
146 |
128 132 133 144 145
|
syl22anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
147 |
90 116 146
|
3eqtr3d |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
148 |
|
f1of1 |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 ) |
149 |
14 15 148
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 |
150 |
|
f1fveq |
|- ( ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 /\ ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
151 |
149 150
|
mpan |
|- ( ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
152 |
99 125 151
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
153 |
147 152
|
mpbid |
|- ( ph -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) |