Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
0re |
|- 0 e. RR |
6 |
1 2 3 4
|
signsvfn |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ 0 e. RR ) -> ( V ` ( F ++ <" 0 "> ) ) = ( ( V ` F ) + if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. 0 ) < 0 , 1 , 0 ) ) ) |
7 |
5 6
|
mpan2 |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( V ` ( F ++ <" 0 "> ) ) = ( ( V ` F ) + if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. 0 ) < 0 , 1 , 0 ) ) ) |
8 |
5
|
ltnri |
|- -. 0 < 0 |
9 |
|
neg1cn |
|- -u 1 e. CC |
10 |
|
ax-1cn |
|- 1 e. CC |
11 |
|
prssi |
|- ( ( -u 1 e. CC /\ 1 e. CC ) -> { -u 1 , 1 } C_ CC ) |
12 |
9 10 11
|
mp2an |
|- { -u 1 , 1 } C_ CC |
13 |
|
simpl |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> F e. ( Word RR \ { (/) } ) ) |
14 |
|
eldifsn |
|- ( F e. ( Word RR \ { (/) } ) <-> ( F e. Word RR /\ F =/= (/) ) ) |
15 |
13 14
|
sylib |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( F e. Word RR /\ F =/= (/) ) ) |
16 |
|
lennncl |
|- ( ( F e. Word RR /\ F =/= (/) ) -> ( # ` F ) e. NN ) |
17 |
|
fzo0end |
|- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
18 |
15 16 17
|
3syl |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
19 |
1 2 3 4
|
signstfvcl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) /\ ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. { -u 1 , 1 } ) |
20 |
18 19
|
mpdan |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. { -u 1 , 1 } ) |
21 |
12 20
|
sselid |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) e. CC ) |
22 |
21
|
mul01d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. 0 ) = 0 ) |
23 |
22
|
breq1d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. 0 ) < 0 <-> 0 < 0 ) ) |
24 |
8 23
|
mtbiri |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> -. ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. 0 ) < 0 ) |
25 |
24
|
iffalsed |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. 0 ) < 0 , 1 , 0 ) = 0 ) |
26 |
25
|
oveq2d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( ( V ` F ) + if ( ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) x. 0 ) < 0 , 1 , 0 ) ) = ( ( V ` F ) + 0 ) ) |
27 |
1 2 3 4
|
signsvvf |
|- V : Word RR --> NN0 |
28 |
27
|
a1i |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> V : Word RR --> NN0 ) |
29 |
13
|
eldifad |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> F e. Word RR ) |
30 |
28 29
|
ffvelrnd |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( V ` F ) e. NN0 ) |
31 |
30
|
nn0cnd |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( V ` F ) e. CC ) |
32 |
31
|
addid1d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( ( V ` F ) + 0 ) = ( V ` F ) ) |
33 |
7 26 32
|
3eqtrd |
|- ( ( F e. ( Word RR \ { (/) } ) /\ ( F ` 0 ) =/= 0 ) -> ( V ` ( F ++ <" 0 "> ) ) = ( V ` F ) ) |