| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 6 | 1 2 3 4 | signsvfn | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  0  ∈  ℝ )  →  ( 𝑉 ‘ ( 𝐹  ++  〈“ 0 ”〉 ) )  =  ( ( 𝑉 ‘ 𝐹 )  +  if ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ·  0 )  <  0 ,  1 ,  0 ) ) ) | 
						
							| 7 | 5 6 | mpan2 | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( 𝑉 ‘ ( 𝐹  ++  〈“ 0 ”〉 ) )  =  ( ( 𝑉 ‘ 𝐹 )  +  if ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ·  0 )  <  0 ,  1 ,  0 ) ) ) | 
						
							| 8 | 5 | ltnri | ⊢ ¬  0  <  0 | 
						
							| 9 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 10 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 11 |  | prssi | ⊢ ( ( - 1  ∈  ℂ  ∧  1  ∈  ℂ )  →  { - 1 ,  1 }  ⊆  ℂ ) | 
						
							| 12 | 9 10 11 | mp2an | ⊢ { - 1 ,  1 }  ⊆  ℂ | 
						
							| 13 |  | simpl | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  𝐹  ∈  ( Word  ℝ  ∖  { ∅ } ) ) | 
						
							| 14 |  | eldifsn | ⊢ ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ↔  ( 𝐹  ∈  Word  ℝ  ∧  𝐹  ≠  ∅ ) ) | 
						
							| 15 | 13 14 | sylib | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( 𝐹  ∈  Word  ℝ  ∧  𝐹  ≠  ∅ ) ) | 
						
							| 16 |  | lennncl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝐹  ≠  ∅ )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 17 |  | fzo0end | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 18 | 15 16 17 | 3syl | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 19 | 1 2 3 4 | signstfvcl | ⊢ ( ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  ∧  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ∈  { - 1 ,  1 } ) | 
						
							| 20 | 18 19 | mpdan | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ∈  { - 1 ,  1 } ) | 
						
							| 21 | 12 20 | sselid | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ∈  ℂ ) | 
						
							| 22 | 21 | mul01d | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ·  0 )  =  0 ) | 
						
							| 23 | 22 | breq1d | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ·  0 )  <  0  ↔  0  <  0 ) ) | 
						
							| 24 | 8 23 | mtbiri | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ¬  ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ·  0 )  <  0 ) | 
						
							| 25 | 24 | iffalsed | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  if ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ·  0 )  <  0 ,  1 ,  0 )  =  0 ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( ( 𝑉 ‘ 𝐹 )  +  if ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ·  0 )  <  0 ,  1 ,  0 ) )  =  ( ( 𝑉 ‘ 𝐹 )  +  0 ) ) | 
						
							| 27 | 1 2 3 4 | signsvvf | ⊢ 𝑉 : Word  ℝ ⟶ ℕ0 | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  𝑉 : Word  ℝ ⟶ ℕ0 ) | 
						
							| 29 | 13 | eldifad | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  𝐹  ∈  Word  ℝ ) | 
						
							| 30 | 28 29 | ffvelcdmd | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( 𝑉 ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 31 | 30 | nn0cnd | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( 𝑉 ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 32 | 31 | addridd | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( ( 𝑉 ‘ 𝐹 )  +  0 )  =  ( 𝑉 ‘ 𝐹 ) ) | 
						
							| 33 | 7 26 32 | 3eqtrd | ⊢ ( ( 𝐹  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐹 ‘ 0 )  ≠  0 )  →  ( 𝑉 ‘ ( 𝐹  ++  〈“ 0 ”〉 ) )  =  ( 𝑉 ‘ 𝐹 ) ) |