Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
1 2 3 4
|
signsvfn |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ 0 ∈ ℝ ) → ( 𝑉 ‘ ( 𝐹 ++ 〈“ 0 ”〉 ) ) = ( ( 𝑉 ‘ 𝐹 ) + if ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) · 0 ) < 0 , 1 , 0 ) ) ) |
7 |
5 6
|
mpan2 |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( 𝑉 ‘ ( 𝐹 ++ 〈“ 0 ”〉 ) ) = ( ( 𝑉 ‘ 𝐹 ) + if ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) · 0 ) < 0 , 1 , 0 ) ) ) |
8 |
5
|
ltnri |
⊢ ¬ 0 < 0 |
9 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
11 |
|
prssi |
⊢ ( ( - 1 ∈ ℂ ∧ 1 ∈ ℂ ) → { - 1 , 1 } ⊆ ℂ ) |
12 |
9 10 11
|
mp2an |
⊢ { - 1 , 1 } ⊆ ℂ |
13 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ) |
14 |
|
eldifsn |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ↔ ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) ) |
15 |
13 14
|
sylib |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) ) |
16 |
|
lennncl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
17 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
18 |
15 16 17
|
3syl |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
19 |
1 2 3 4
|
signstfvcl |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ { - 1 , 1 } ) |
20 |
18 19
|
mpdan |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ { - 1 , 1 } ) |
21 |
12 20
|
sselid |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ ℂ ) |
22 |
21
|
mul01d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) · 0 ) = 0 ) |
23 |
22
|
breq1d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) · 0 ) < 0 ↔ 0 < 0 ) ) |
24 |
8 23
|
mtbiri |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ¬ ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) · 0 ) < 0 ) |
25 |
24
|
iffalsed |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → if ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) · 0 ) < 0 , 1 , 0 ) = 0 ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( ( 𝑉 ‘ 𝐹 ) + if ( ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) · 0 ) < 0 , 1 , 0 ) ) = ( ( 𝑉 ‘ 𝐹 ) + 0 ) ) |
27 |
1 2 3 4
|
signsvvf |
⊢ 𝑉 : Word ℝ ⟶ ℕ0 |
28 |
27
|
a1i |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → 𝑉 : Word ℝ ⟶ ℕ0 ) |
29 |
13
|
eldifad |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → 𝐹 ∈ Word ℝ ) |
30 |
28 29
|
ffvelrnd |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( 𝑉 ‘ 𝐹 ) ∈ ℕ0 ) |
31 |
30
|
nn0cnd |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( 𝑉 ‘ 𝐹 ) ∈ ℂ ) |
32 |
31
|
addid1d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( ( 𝑉 ‘ 𝐹 ) + 0 ) = ( 𝑉 ‘ 𝐹 ) ) |
33 |
7 26 32
|
3eqtrd |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ ( 𝐹 ‘ 0 ) ≠ 0 ) → ( 𝑉 ‘ ( 𝐹 ++ 〈“ 0 ”〉 ) ) = ( 𝑉 ‘ 𝐹 ) ) |