Metamath Proof Explorer


Theorem signlem0

Description: Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
Assertion signlem0 FWordF00VF++⟨“0”⟩=VF

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 0re 0
6 1 2 3 4 signsvfn FWordF000VF++⟨“0”⟩=VF+ifTFF10<010
7 5 6 mpan2 FWordF00VF++⟨“0”⟩=VF+ifTFF10<010
8 5 ltnri ¬0<0
9 neg1cn 1
10 ax-1cn 1
11 prssi 1111
12 9 10 11 mp2an 11
13 simpl FWordF00FWord
14 eldifsn FWordFWordF
15 13 14 sylib FWordF00FWordF
16 lennncl FWordFF
17 fzo0end FF10..^F
18 15 16 17 3syl FWordF00F10..^F
19 1 2 3 4 signstfvcl FWordF00F10..^FTFF111
20 18 19 mpdan FWordF00TFF111
21 12 20 sselid FWordF00TFF1
22 21 mul01d FWordF00TFF10=0
23 22 breq1d FWordF00TFF10<00<0
24 8 23 mtbiri FWordF00¬TFF10<0
25 24 iffalsed FWordF00ifTFF10<010=0
26 25 oveq2d FWordF00VF+ifTFF10<010=VF+0
27 1 2 3 4 signsvvf V:Word0
28 27 a1i FWordF00V:Word0
29 13 eldifad FWordF00FWord
30 28 29 ffvelcdmd FWordF00VF0
31 30 nn0cnd FWordF00VF
32 31 addridd FWordF00VF+0=VF
33 7 26 32 3eqtrd FWordF00VF++⟨“0”⟩=VF