| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlingr.1 |
|- S = ( n e. NN0 |-> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
| 2 |
|
stirlingr.2 |
|- R = ( ~~>t ` ( topGen ` ran (,) ) ) |
| 3 |
1
|
stirling |
|- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 |
| 4 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 5 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 6 |
|
eqid |
|- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) = ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) |
| 7 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 8 |
|
faccl |
|- ( n e. NN0 -> ( ! ` n ) e. NN ) |
| 9 |
|
nnre |
|- ( ( ! ` n ) e. NN -> ( ! ` n ) e. RR ) |
| 10 |
7 8 9
|
3syl |
|- ( n e. NN -> ( ! ` n ) e. RR ) |
| 11 |
|
2re |
|- 2 e. RR |
| 12 |
11
|
a1i |
|- ( n e. NN -> 2 e. RR ) |
| 13 |
|
pire |
|- _pi e. RR |
| 14 |
13
|
a1i |
|- ( n e. NN -> _pi e. RR ) |
| 15 |
12 14
|
remulcld |
|- ( n e. NN -> ( 2 x. _pi ) e. RR ) |
| 16 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 17 |
15 16
|
remulcld |
|- ( n e. NN -> ( ( 2 x. _pi ) x. n ) e. RR ) |
| 18 |
|
0re |
|- 0 e. RR |
| 19 |
18
|
a1i |
|- ( n e. NN -> 0 e. RR ) |
| 20 |
|
2pos |
|- 0 < 2 |
| 21 |
20
|
a1i |
|- ( n e. NN -> 0 < 2 ) |
| 22 |
19 12 21
|
ltled |
|- ( n e. NN -> 0 <_ 2 ) |
| 23 |
|
pipos |
|- 0 < _pi |
| 24 |
18 13 23
|
ltleii |
|- 0 <_ _pi |
| 25 |
24
|
a1i |
|- ( n e. NN -> 0 <_ _pi ) |
| 26 |
12 14 22 25
|
mulge0d |
|- ( n e. NN -> 0 <_ ( 2 x. _pi ) ) |
| 27 |
7
|
nn0ge0d |
|- ( n e. NN -> 0 <_ n ) |
| 28 |
15 16 26 27
|
mulge0d |
|- ( n e. NN -> 0 <_ ( ( 2 x. _pi ) x. n ) ) |
| 29 |
17 28
|
resqrtcld |
|- ( n e. NN -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) e. RR ) |
| 30 |
|
ere |
|- _e e. RR |
| 31 |
30
|
a1i |
|- ( n e. NN -> _e e. RR ) |
| 32 |
|
epos |
|- 0 < _e |
| 33 |
18 32
|
gtneii |
|- _e =/= 0 |
| 34 |
33
|
a1i |
|- ( n e. NN -> _e =/= 0 ) |
| 35 |
16 31 34
|
redivcld |
|- ( n e. NN -> ( n / _e ) e. RR ) |
| 36 |
35 7
|
reexpcld |
|- ( n e. NN -> ( ( n / _e ) ^ n ) e. RR ) |
| 37 |
29 36
|
remulcld |
|- ( n e. NN -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR ) |
| 38 |
1
|
fvmpt2 |
|- ( ( n e. NN0 /\ ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR ) -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
| 39 |
7 37 38
|
syl2anc |
|- ( n e. NN -> ( S ` n ) = ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
| 40 |
|
2rp |
|- 2 e. RR+ |
| 41 |
40
|
a1i |
|- ( n e. NN -> 2 e. RR+ ) |
| 42 |
|
pirp |
|- _pi e. RR+ |
| 43 |
42
|
a1i |
|- ( n e. NN -> _pi e. RR+ ) |
| 44 |
41 43
|
rpmulcld |
|- ( n e. NN -> ( 2 x. _pi ) e. RR+ ) |
| 45 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
| 46 |
44 45
|
rpmulcld |
|- ( n e. NN -> ( ( 2 x. _pi ) x. n ) e. RR+ ) |
| 47 |
46
|
rpsqrtcld |
|- ( n e. NN -> ( sqrt ` ( ( 2 x. _pi ) x. n ) ) e. RR+ ) |
| 48 |
|
epr |
|- _e e. RR+ |
| 49 |
48
|
a1i |
|- ( n e. NN -> _e e. RR+ ) |
| 50 |
45 49
|
rpdivcld |
|- ( n e. NN -> ( n / _e ) e. RR+ ) |
| 51 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
| 52 |
50 51
|
rpexpcld |
|- ( n e. NN -> ( ( n / _e ) ^ n ) e. RR+ ) |
| 53 |
47 52
|
rpmulcld |
|- ( n e. NN -> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) e. RR+ ) |
| 54 |
39 53
|
eqeltrd |
|- ( n e. NN -> ( S ` n ) e. RR+ ) |
| 55 |
10 54
|
rerpdivcld |
|- ( n e. NN -> ( ( ! ` n ) / ( S ` n ) ) e. RR ) |
| 56 |
6 55
|
fmpti |
|- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) : NN --> RR |
| 57 |
56
|
a1i |
|- ( T. -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) : NN --> RR ) |
| 58 |
2 4 5 57
|
climreeq |
|- ( T. -> ( ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 <-> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) ) |
| 59 |
58
|
mptru |
|- ( ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 <-> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) |
| 60 |
3 59
|
mpbir |
|- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) R 1 |