Description: Stirling's approximation formula for n factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling is proven for convergence in the topology of complex numbers. The variable R is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stirlingr.1 | |
|
stirlingr.2 | |
||
Assertion | stirlingr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stirlingr.1 | |
|
2 | stirlingr.2 | |
|
3 | 1 | stirling | |
4 | nnuz | |
|
5 | 1zzd | |
|
6 | eqid | |
|
7 | nnnn0 | |
|
8 | faccl | |
|
9 | nnre | |
|
10 | 7 8 9 | 3syl | |
11 | 2re | |
|
12 | 11 | a1i | |
13 | pire | |
|
14 | 13 | a1i | |
15 | 12 14 | remulcld | |
16 | nnre | |
|
17 | 15 16 | remulcld | |
18 | 0re | |
|
19 | 18 | a1i | |
20 | 2pos | |
|
21 | 20 | a1i | |
22 | 19 12 21 | ltled | |
23 | pipos | |
|
24 | 18 13 23 | ltleii | |
25 | 24 | a1i | |
26 | 12 14 22 25 | mulge0d | |
27 | 7 | nn0ge0d | |
28 | 15 16 26 27 | mulge0d | |
29 | 17 28 | resqrtcld | |
30 | ere | |
|
31 | 30 | a1i | |
32 | epos | |
|
33 | 18 32 | gtneii | |
34 | 33 | a1i | |
35 | 16 31 34 | redivcld | |
36 | 35 7 | reexpcld | |
37 | 29 36 | remulcld | |
38 | 1 | fvmpt2 | |
39 | 7 37 38 | syl2anc | |
40 | 2rp | |
|
41 | 40 | a1i | |
42 | pirp | |
|
43 | 42 | a1i | |
44 | 41 43 | rpmulcld | |
45 | nnrp | |
|
46 | 44 45 | rpmulcld | |
47 | 46 | rpsqrtcld | |
48 | epr | |
|
49 | 48 | a1i | |
50 | 45 49 | rpdivcld | |
51 | nnz | |
|
52 | 50 51 | rpexpcld | |
53 | 47 52 | rpmulcld | |
54 | 39 53 | eqeltrd | |
55 | 10 54 | rerpdivcld | |
56 | 6 55 | fmpti | |
57 | 56 | a1i | |
58 | 2 4 5 57 | climreeq | |
59 | 58 | mptru | |
60 | 3 59 | mpbir | |