| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzoel2 |
|- ( A e. ( 0 ..^ B ) -> B e. ZZ ) |
| 2 |
1
|
zcnd |
|- ( A e. ( 0 ..^ B ) -> B e. CC ) |
| 3 |
|
elfzoelz |
|- ( A e. ( 0 ..^ B ) -> A e. ZZ ) |
| 4 |
3
|
zcnd |
|- ( A e. ( 0 ..^ B ) -> A e. CC ) |
| 5 |
2 4
|
jca |
|- ( A e. ( 0 ..^ B ) -> ( B e. CC /\ A e. CC ) ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( B e. CC /\ A e. CC ) ) |
| 7 |
|
negsubdi2 |
|- ( ( B e. CC /\ A e. CC ) -> -u ( B - A ) = ( A - B ) ) |
| 8 |
6 7
|
syl |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> -u ( B - A ) = ( A - B ) ) |
| 9 |
8
|
eqcomd |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( A - B ) = -u ( B - A ) ) |
| 10 |
9
|
oveq1d |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( ( A - B ) mod N ) = ( -u ( B - A ) mod N ) ) |
| 11 |
1 3
|
zsubcld |
|- ( A e. ( 0 ..^ B ) -> ( B - A ) e. ZZ ) |
| 12 |
11
|
zred |
|- ( A e. ( 0 ..^ B ) -> ( B - A ) e. RR ) |
| 13 |
12
|
3ad2ant2 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( B - A ) e. RR ) |
| 14 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> N e. RR+ ) |
| 16 |
|
negmod |
|- ( ( ( B - A ) e. RR /\ N e. RR+ ) -> ( -u ( B - A ) mod N ) = ( ( N - ( B - A ) ) mod N ) ) |
| 17 |
13 15 16
|
syl2anc |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( -u ( B - A ) mod N ) = ( ( N - ( B - A ) ) mod N ) ) |
| 18 |
10 17
|
eqtrd |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( ( A - B ) mod N ) = ( ( N - ( B - A ) ) mod N ) ) |
| 19 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 20 |
19
|
3ad2ant1 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> N e. ZZ ) |
| 21 |
11
|
3ad2ant2 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( B - A ) e. ZZ ) |
| 22 |
20 21
|
zsubcld |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( N - ( B - A ) ) e. ZZ ) |
| 23 |
22
|
zred |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( N - ( B - A ) ) e. RR ) |
| 24 |
1
|
zred |
|- ( A e. ( 0 ..^ B ) -> B e. RR ) |
| 25 |
24
|
3ad2ant2 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> B e. RR ) |
| 26 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 27 |
26
|
3ad2ant1 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> N e. RR ) |
| 28 |
|
elfzo0suble |
|- ( A e. ( 0 ..^ B ) -> ( B - A ) <_ B ) |
| 29 |
28
|
3ad2ant2 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( B - A ) <_ B ) |
| 30 |
|
simp3 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> B < N ) |
| 31 |
|
leltletr |
|- ( ( ( B - A ) e. RR /\ B e. RR /\ N e. RR ) -> ( ( ( B - A ) <_ B /\ B < N ) -> ( B - A ) <_ N ) ) |
| 32 |
31
|
imp |
|- ( ( ( ( B - A ) e. RR /\ B e. RR /\ N e. RR ) /\ ( ( B - A ) <_ B /\ B < N ) ) -> ( B - A ) <_ N ) |
| 33 |
13 25 27 29 30 32
|
syl32anc |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( B - A ) <_ N ) |
| 34 |
27 13
|
subge0d |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( 0 <_ ( N - ( B - A ) ) <-> ( B - A ) <_ N ) ) |
| 35 |
33 34
|
mpbird |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> 0 <_ ( N - ( B - A ) ) ) |
| 36 |
|
elfzo0 |
|- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
| 37 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 38 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 39 |
|
posdif |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) ) |
| 40 |
37 38 39
|
syl2an |
|- ( ( A e. NN0 /\ B e. NN ) -> ( A < B <-> 0 < ( B - A ) ) ) |
| 41 |
40
|
biimp3a |
|- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> 0 < ( B - A ) ) |
| 42 |
36 41
|
sylbi |
|- ( A e. ( 0 ..^ B ) -> 0 < ( B - A ) ) |
| 43 |
42
|
3ad2ant2 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> 0 < ( B - A ) ) |
| 44 |
13 27
|
ltsubposd |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( 0 < ( B - A ) <-> ( N - ( B - A ) ) < N ) ) |
| 45 |
43 44
|
mpbid |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( N - ( B - A ) ) < N ) |
| 46 |
|
modid |
|- ( ( ( ( N - ( B - A ) ) e. RR /\ N e. RR+ ) /\ ( 0 <_ ( N - ( B - A ) ) /\ ( N - ( B - A ) ) < N ) ) -> ( ( N - ( B - A ) ) mod N ) = ( N - ( B - A ) ) ) |
| 47 |
23 15 35 45 46
|
syl22anc |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( ( N - ( B - A ) ) mod N ) = ( N - ( B - A ) ) ) |
| 48 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 49 |
48
|
3ad2ant1 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> N e. CC ) |
| 50 |
2
|
3ad2ant2 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> B e. CC ) |
| 51 |
4
|
3ad2ant2 |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> A e. CC ) |
| 52 |
49 50 51
|
subsub3d |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( N - ( B - A ) ) = ( ( N + A ) - B ) ) |
| 53 |
18 47 52
|
3eqtrd |
|- ( ( N e. NN /\ A e. ( 0 ..^ B ) /\ B < N ) -> ( ( A - B ) mod N ) = ( ( N + A ) - B ) ) |