| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supminfrnmpt.x |
|- F/ x ph |
| 2 |
|
supminfrnmpt.a |
|- ( ph -> A =/= (/) ) |
| 3 |
|
supminfrnmpt.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 4 |
|
supminfrnmpt.y |
|- ( ph -> E. y e. RR A. x e. A B <_ y ) |
| 5 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 6 |
1 5 3
|
rnmptssd |
|- ( ph -> ran ( x e. A |-> B ) C_ RR ) |
| 7 |
1 3 5 2
|
rnmptn0 |
|- ( ph -> ran ( x e. A |-> B ) =/= (/) ) |
| 8 |
1 4
|
rnmptbdd |
|- ( ph -> E. y e. RR A. z e. ran ( x e. A |-> B ) z <_ y ) |
| 9 |
|
supminf |
|- ( ( ran ( x e. A |-> B ) C_ RR /\ ran ( x e. A |-> B ) =/= (/) /\ E. y e. RR A. z e. ran ( x e. A |-> B ) z <_ y ) -> sup ( ran ( x e. A |-> B ) , RR , < ) = -u inf ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ph -> sup ( ran ( x e. A |-> B ) , RR , < ) = -u inf ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) ) |
| 11 |
|
eqid |
|- ( x e. A |-> -u B ) = ( x e. A |-> -u B ) |
| 12 |
|
simpr |
|- ( ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) -> -u w e. ran ( x e. A |-> B ) ) |
| 13 |
|
renegcl |
|- ( w e. RR -> -u w e. RR ) |
| 14 |
5
|
elrnmpt |
|- ( -u w e. RR -> ( -u w e. ran ( x e. A |-> B ) <-> E. x e. A -u w = B ) ) |
| 15 |
13 14
|
syl |
|- ( w e. RR -> ( -u w e. ran ( x e. A |-> B ) <-> E. x e. A -u w = B ) ) |
| 16 |
15
|
adantr |
|- ( ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) -> ( -u w e. ran ( x e. A |-> B ) <-> E. x e. A -u w = B ) ) |
| 17 |
12 16
|
mpbid |
|- ( ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) -> E. x e. A -u w = B ) |
| 18 |
17
|
adantll |
|- ( ( ( ph /\ w e. RR ) /\ -u w e. ran ( x e. A |-> B ) ) -> E. x e. A -u w = B ) |
| 19 |
|
nfv |
|- F/ x w e. RR |
| 20 |
1 19
|
nfan |
|- F/ x ( ph /\ w e. RR ) |
| 21 |
|
negeq |
|- ( -u w = B -> -u -u w = -u B ) |
| 22 |
21
|
eqcomd |
|- ( -u w = B -> -u B = -u -u w ) |
| 23 |
22
|
adantl |
|- ( ( w e. RR /\ -u w = B ) -> -u B = -u -u w ) |
| 24 |
|
recn |
|- ( w e. RR -> w e. CC ) |
| 25 |
24
|
negnegd |
|- ( w e. RR -> -u -u w = w ) |
| 26 |
25
|
adantr |
|- ( ( w e. RR /\ -u w = B ) -> -u -u w = w ) |
| 27 |
23 26
|
eqtr2d |
|- ( ( w e. RR /\ -u w = B ) -> w = -u B ) |
| 28 |
27
|
ex |
|- ( w e. RR -> ( -u w = B -> w = -u B ) ) |
| 29 |
28
|
adantl |
|- ( ( ph /\ w e. RR ) -> ( -u w = B -> w = -u B ) ) |
| 30 |
29
|
adantr |
|- ( ( ( ph /\ w e. RR ) /\ x e. A ) -> ( -u w = B -> w = -u B ) ) |
| 31 |
|
negeq |
|- ( w = -u B -> -u w = -u -u B ) |
| 32 |
31
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ w = -u B ) -> -u w = -u -u B ) |
| 33 |
3
|
recnd |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 34 |
33
|
negnegd |
|- ( ( ph /\ x e. A ) -> -u -u B = B ) |
| 35 |
34
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ w = -u B ) -> -u -u B = B ) |
| 36 |
32 35
|
eqtrd |
|- ( ( ( ph /\ x e. A ) /\ w = -u B ) -> -u w = B ) |
| 37 |
36
|
ex |
|- ( ( ph /\ x e. A ) -> ( w = -u B -> -u w = B ) ) |
| 38 |
37
|
adantlr |
|- ( ( ( ph /\ w e. RR ) /\ x e. A ) -> ( w = -u B -> -u w = B ) ) |
| 39 |
30 38
|
impbid |
|- ( ( ( ph /\ w e. RR ) /\ x e. A ) -> ( -u w = B <-> w = -u B ) ) |
| 40 |
20 39
|
rexbida |
|- ( ( ph /\ w e. RR ) -> ( E. x e. A -u w = B <-> E. x e. A w = -u B ) ) |
| 41 |
40
|
adantr |
|- ( ( ( ph /\ w e. RR ) /\ -u w e. ran ( x e. A |-> B ) ) -> ( E. x e. A -u w = B <-> E. x e. A w = -u B ) ) |
| 42 |
18 41
|
mpbid |
|- ( ( ( ph /\ w e. RR ) /\ -u w e. ran ( x e. A |-> B ) ) -> E. x e. A w = -u B ) |
| 43 |
|
simplr |
|- ( ( ( ph /\ w e. RR ) /\ -u w e. ran ( x e. A |-> B ) ) -> w e. RR ) |
| 44 |
11 42 43
|
elrnmptd |
|- ( ( ( ph /\ w e. RR ) /\ -u w e. ran ( x e. A |-> B ) ) -> w e. ran ( x e. A |-> -u B ) ) |
| 45 |
44
|
ex |
|- ( ( ph /\ w e. RR ) -> ( -u w e. ran ( x e. A |-> B ) -> w e. ran ( x e. A |-> -u B ) ) ) |
| 46 |
45
|
ralrimiva |
|- ( ph -> A. w e. RR ( -u w e. ran ( x e. A |-> B ) -> w e. ran ( x e. A |-> -u B ) ) ) |
| 47 |
|
rabss |
|- ( { w e. RR | -u w e. ran ( x e. A |-> B ) } C_ ran ( x e. A |-> -u B ) <-> A. w e. RR ( -u w e. ran ( x e. A |-> B ) -> w e. ran ( x e. A |-> -u B ) ) ) |
| 48 |
46 47
|
sylibr |
|- ( ph -> { w e. RR | -u w e. ran ( x e. A |-> B ) } C_ ran ( x e. A |-> -u B ) ) |
| 49 |
|
nfcv |
|- F/_ x -u w |
| 50 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
| 51 |
50
|
nfrn |
|- F/_ x ran ( x e. A |-> B ) |
| 52 |
49 51
|
nfel |
|- F/ x -u w e. ran ( x e. A |-> B ) |
| 53 |
|
nfcv |
|- F/_ x RR |
| 54 |
52 53
|
nfrabw |
|- F/_ x { w e. RR | -u w e. ran ( x e. A |-> B ) } |
| 55 |
31
|
eleq1d |
|- ( w = -u B -> ( -u w e. ran ( x e. A |-> B ) <-> -u -u B e. ran ( x e. A |-> B ) ) ) |
| 56 |
3
|
renegcld |
|- ( ( ph /\ x e. A ) -> -u B e. RR ) |
| 57 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 58 |
5
|
elrnmpt1 |
|- ( ( x e. A /\ B e. RR ) -> B e. ran ( x e. A |-> B ) ) |
| 59 |
57 3 58
|
syl2anc |
|- ( ( ph /\ x e. A ) -> B e. ran ( x e. A |-> B ) ) |
| 60 |
34 59
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> -u -u B e. ran ( x e. A |-> B ) ) |
| 61 |
55 56 60
|
elrabd |
|- ( ( ph /\ x e. A ) -> -u B e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) |
| 62 |
1 54 11 61
|
rnmptssdf |
|- ( ph -> ran ( x e. A |-> -u B ) C_ { w e. RR | -u w e. ran ( x e. A |-> B ) } ) |
| 63 |
48 62
|
eqssd |
|- ( ph -> { w e. RR | -u w e. ran ( x e. A |-> B ) } = ran ( x e. A |-> -u B ) ) |
| 64 |
63
|
infeq1d |
|- ( ph -> inf ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) = inf ( ran ( x e. A |-> -u B ) , RR , < ) ) |
| 65 |
64
|
negeqd |
|- ( ph -> -u inf ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) = -u inf ( ran ( x e. A |-> -u B ) , RR , < ) ) |
| 66 |
10 65
|
eqtrd |
|- ( ph -> sup ( ran ( x e. A |-> B ) , RR , < ) = -u inf ( ran ( x e. A |-> -u B ) , RR , < ) ) |