Metamath Proof Explorer


Theorem infxrpnf

Description: Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion infxrpnf
|- ( A C_ RR* -> inf ( ( A u. { +oo } ) , RR* , < ) = inf ( A , RR* , < ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A C_ RR* -> A C_ RR* )
2 pnfxr
 |-  +oo e. RR*
3 snssi
 |-  ( +oo e. RR* -> { +oo } C_ RR* )
4 2 3 ax-mp
 |-  { +oo } C_ RR*
5 4 a1i
 |-  ( A C_ RR* -> { +oo } C_ RR* )
6 1 5 unssd
 |-  ( A C_ RR* -> ( A u. { +oo } ) C_ RR* )
7 6 infxrcld
 |-  ( A C_ RR* -> inf ( ( A u. { +oo } ) , RR* , < ) e. RR* )
8 infxrcl
 |-  ( A C_ RR* -> inf ( A , RR* , < ) e. RR* )
9 ssun1
 |-  A C_ ( A u. { +oo } )
10 9 a1i
 |-  ( A C_ RR* -> A C_ ( A u. { +oo } ) )
11 infxrss
 |-  ( ( A C_ ( A u. { +oo } ) /\ ( A u. { +oo } ) C_ RR* ) -> inf ( ( A u. { +oo } ) , RR* , < ) <_ inf ( A , RR* , < ) )
12 10 6 11 syl2anc
 |-  ( A C_ RR* -> inf ( ( A u. { +oo } ) , RR* , < ) <_ inf ( A , RR* , < ) )
13 infeq1
 |-  ( A = (/) -> inf ( A , RR* , < ) = inf ( (/) , RR* , < ) )
14 xrinf0
 |-  inf ( (/) , RR* , < ) = +oo
15 14 2 eqeltri
 |-  inf ( (/) , RR* , < ) e. RR*
16 15 a1i
 |-  ( A = (/) -> inf ( (/) , RR* , < ) e. RR* )
17 13 16 eqeltrd
 |-  ( A = (/) -> inf ( A , RR* , < ) e. RR* )
18 xrltso
 |-  < Or RR*
19 infsn
 |-  ( ( < Or RR* /\ +oo e. RR* ) -> inf ( { +oo } , RR* , < ) = +oo )
20 18 2 19 mp2an
 |-  inf ( { +oo } , RR* , < ) = +oo
21 20 eqcomi
 |-  +oo = inf ( { +oo } , RR* , < )
22 21 a1i
 |-  ( A = (/) -> +oo = inf ( { +oo } , RR* , < ) )
23 13 14 eqtrdi
 |-  ( A = (/) -> inf ( A , RR* , < ) = +oo )
24 uneq1
 |-  ( A = (/) -> ( A u. { +oo } ) = ( (/) u. { +oo } ) )
25 0un
 |-  ( (/) u. { +oo } ) = { +oo }
26 25 a1i
 |-  ( A = (/) -> ( (/) u. { +oo } ) = { +oo } )
27 24 26 eqtrd
 |-  ( A = (/) -> ( A u. { +oo } ) = { +oo } )
28 27 infeq1d
 |-  ( A = (/) -> inf ( ( A u. { +oo } ) , RR* , < ) = inf ( { +oo } , RR* , < ) )
29 22 23 28 3eqtr4d
 |-  ( A = (/) -> inf ( A , RR* , < ) = inf ( ( A u. { +oo } ) , RR* , < ) )
30 17 29 xreqled
 |-  ( A = (/) -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) )
31 30 adantl
 |-  ( ( A C_ RR* /\ A = (/) ) -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) )
32 neqne
 |-  ( -. A = (/) -> A =/= (/) )
33 nfv
 |-  F/ x ( A C_ RR* /\ A =/= (/) )
34 nfv
 |-  F/ y ( A C_ RR* /\ A =/= (/) )
35 simpl
 |-  ( ( A C_ RR* /\ A =/= (/) ) -> A C_ RR* )
36 35 6 syl
 |-  ( ( A C_ RR* /\ A =/= (/) ) -> ( A u. { +oo } ) C_ RR* )
37 simpr
 |-  ( ( A C_ RR* /\ x e. A ) -> x e. A )
38 ssel2
 |-  ( ( A C_ RR* /\ x e. A ) -> x e. RR* )
39 38 xrleidd
 |-  ( ( A C_ RR* /\ x e. A ) -> x <_ x )
40 breq1
 |-  ( y = x -> ( y <_ x <-> x <_ x ) )
41 40 rspcev
 |-  ( ( x e. A /\ x <_ x ) -> E. y e. A y <_ x )
42 37 39 41 syl2anc
 |-  ( ( A C_ RR* /\ x e. A ) -> E. y e. A y <_ x )
43 42 ad4ant14
 |-  ( ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) /\ x e. A ) -> E. y e. A y <_ x )
44 simpll
 |-  ( ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) /\ -. x e. A ) -> ( A C_ RR* /\ A =/= (/) ) )
45 elunnel1
 |-  ( ( x e. ( A u. { +oo } ) /\ -. x e. A ) -> x e. { +oo } )
46 elsni
 |-  ( x e. { +oo } -> x = +oo )
47 45 46 syl
 |-  ( ( x e. ( A u. { +oo } ) /\ -. x e. A ) -> x = +oo )
48 47 adantll
 |-  ( ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) /\ -. x e. A ) -> x = +oo )
49 simplr
 |-  ( ( ( A C_ RR* /\ A =/= (/) ) /\ x = +oo ) -> A =/= (/) )
50 ssel2
 |-  ( ( A C_ RR* /\ y e. A ) -> y e. RR* )
51 pnfge
 |-  ( y e. RR* -> y <_ +oo )
52 50 51 syl
 |-  ( ( A C_ RR* /\ y e. A ) -> y <_ +oo )
53 52 adantlr
 |-  ( ( ( A C_ RR* /\ x = +oo ) /\ y e. A ) -> y <_ +oo )
54 simplr
 |-  ( ( ( A C_ RR* /\ x = +oo ) /\ y e. A ) -> x = +oo )
55 53 54 breqtrrd
 |-  ( ( ( A C_ RR* /\ x = +oo ) /\ y e. A ) -> y <_ x )
56 55 ralrimiva
 |-  ( ( A C_ RR* /\ x = +oo ) -> A. y e. A y <_ x )
57 56 adantlr
 |-  ( ( ( A C_ RR* /\ A =/= (/) ) /\ x = +oo ) -> A. y e. A y <_ x )
58 r19.2z
 |-  ( ( A =/= (/) /\ A. y e. A y <_ x ) -> E. y e. A y <_ x )
59 49 57 58 syl2anc
 |-  ( ( ( A C_ RR* /\ A =/= (/) ) /\ x = +oo ) -> E. y e. A y <_ x )
60 44 48 59 syl2anc
 |-  ( ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) /\ -. x e. A ) -> E. y e. A y <_ x )
61 43 60 pm2.61dan
 |-  ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) -> E. y e. A y <_ x )
62 33 34 35 36 61 infleinf2
 |-  ( ( A C_ RR* /\ A =/= (/) ) -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) )
63 32 62 sylan2
 |-  ( ( A C_ RR* /\ -. A = (/) ) -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) )
64 31 63 pm2.61dan
 |-  ( A C_ RR* -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) )
65 7 8 12 64 xrletrid
 |-  ( A C_ RR* -> inf ( ( A u. { +oo } ) , RR* , < ) = inf ( A , RR* , < ) )