| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supminfrnmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
supminfrnmpt.a |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 3 |
|
supminfrnmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
supminfrnmpt.y |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
| 5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 6 |
1 5 3
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 7 |
1 3 5 2
|
rnmptn0 |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) |
| 8 |
1 4
|
rnmptbdd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
| 9 |
|
supminf |
⊢ ( ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) → sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ , < ) = - inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } , ℝ , < ) ) |
| 10 |
6 7 8 9
|
syl3anc |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ , < ) = - inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } , ℝ , < ) ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) |
| 12 |
|
simpr |
⊢ ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 13 |
|
renegcl |
⊢ ( 𝑤 ∈ ℝ → - 𝑤 ∈ ℝ ) |
| 14 |
5
|
elrnmpt |
⊢ ( - 𝑤 ∈ ℝ → ( - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 - 𝑤 = 𝐵 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝑤 ∈ ℝ → ( - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 - 𝑤 = 𝐵 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ( - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 - 𝑤 = 𝐵 ) ) |
| 17 |
12 16
|
mpbid |
⊢ ( ( 𝑤 ∈ ℝ ∧ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 - 𝑤 = 𝐵 ) |
| 18 |
17
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 - 𝑤 = 𝐵 ) |
| 19 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ∈ ℝ |
| 20 |
1 19
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑤 ∈ ℝ ) |
| 21 |
|
negeq |
⊢ ( - 𝑤 = 𝐵 → - - 𝑤 = - 𝐵 ) |
| 22 |
21
|
eqcomd |
⊢ ( - 𝑤 = 𝐵 → - 𝐵 = - - 𝑤 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝑤 ∈ ℝ ∧ - 𝑤 = 𝐵 ) → - 𝐵 = - - 𝑤 ) |
| 24 |
|
recn |
⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ ) |
| 25 |
24
|
negnegd |
⊢ ( 𝑤 ∈ ℝ → - - 𝑤 = 𝑤 ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑤 ∈ ℝ ∧ - 𝑤 = 𝐵 ) → - - 𝑤 = 𝑤 ) |
| 27 |
23 26
|
eqtr2d |
⊢ ( ( 𝑤 ∈ ℝ ∧ - 𝑤 = 𝐵 ) → 𝑤 = - 𝐵 ) |
| 28 |
27
|
ex |
⊢ ( 𝑤 ∈ ℝ → ( - 𝑤 = 𝐵 → 𝑤 = - 𝐵 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( - 𝑤 = 𝐵 → 𝑤 = - 𝐵 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝑤 = 𝐵 → 𝑤 = - 𝐵 ) ) |
| 31 |
|
negeq |
⊢ ( 𝑤 = - 𝐵 → - 𝑤 = - - 𝐵 ) |
| 32 |
31
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 = - 𝐵 ) → - 𝑤 = - - 𝐵 ) |
| 33 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 34 |
33
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - 𝐵 = 𝐵 ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 = - 𝐵 ) → - - 𝐵 = 𝐵 ) |
| 36 |
32 35
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 = - 𝐵 ) → - 𝑤 = 𝐵 ) |
| 37 |
36
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑤 = - 𝐵 → - 𝑤 = 𝐵 ) ) |
| 38 |
37
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑤 = - 𝐵 → - 𝑤 = 𝐵 ) ) |
| 39 |
30 38
|
impbid |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝑤 = 𝐵 ↔ 𝑤 = - 𝐵 ) ) |
| 40 |
20 39
|
rexbida |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( ∃ 𝑥 ∈ 𝐴 - 𝑤 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = - 𝐵 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐴 - 𝑤 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = - 𝐵 ) ) |
| 42 |
18 41
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 𝑤 = - 𝐵 ) |
| 43 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → 𝑤 ∈ ℝ ) |
| 44 |
11 42 43
|
elrnmptd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) |
| 45 |
44
|
ex |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) ) |
| 46 |
45
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ℝ ( - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) ) |
| 47 |
|
rabss |
⊢ ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } ⊆ ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ↔ ∀ 𝑤 ∈ ℝ ( - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) ) |
| 48 |
46 47
|
sylibr |
⊢ ( 𝜑 → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } ⊆ ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) |
| 49 |
|
nfcv |
⊢ Ⅎ 𝑥 - 𝑤 |
| 50 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 51 |
50
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 52 |
49 51
|
nfel |
⊢ Ⅎ 𝑥 - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 53 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
| 54 |
52 53
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } |
| 55 |
31
|
eleq1d |
⊢ ( 𝑤 = - 𝐵 → ( - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ - - 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 56 |
3
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 58 |
5
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 59 |
57 3 58
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 60 |
34 59
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - - 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 61 |
55 56 60
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } ) |
| 62 |
1 54 11 61
|
rnmptssdf |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ⊆ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } ) |
| 63 |
48 62
|
eqssd |
⊢ ( 𝜑 → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } = ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) |
| 64 |
63
|
infeq1d |
⊢ ( 𝜑 → inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } , ℝ , < ) = inf ( ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) , ℝ , < ) ) |
| 65 |
64
|
negeqd |
⊢ ( 𝜑 → - inf ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) } , ℝ , < ) = - inf ( ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) , ℝ , < ) ) |
| 66 |
10 65
|
eqtrd |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ , < ) = - inf ( ran ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) , ℝ , < ) ) |