| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supminfrnmpt.x |
|
| 2 |
|
supminfrnmpt.a |
|
| 3 |
|
supminfrnmpt.b |
|
| 4 |
|
supminfrnmpt.y |
|
| 5 |
|
eqid |
|
| 6 |
1 5 3
|
rnmptssd |
|
| 7 |
1 3 5 2
|
rnmptn0 |
|
| 8 |
1 4
|
rnmptbdd |
|
| 9 |
|
supminf |
|
| 10 |
6 7 8 9
|
syl3anc |
|
| 11 |
|
eqid |
|
| 12 |
|
simpr |
|
| 13 |
|
renegcl |
|
| 14 |
5
|
elrnmpt |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
adantr |
|
| 17 |
12 16
|
mpbid |
|
| 18 |
17
|
adantll |
|
| 19 |
|
nfv |
|
| 20 |
1 19
|
nfan |
|
| 21 |
|
negeq |
|
| 22 |
21
|
eqcomd |
|
| 23 |
22
|
adantl |
|
| 24 |
|
recn |
|
| 25 |
24
|
negnegd |
|
| 26 |
25
|
adantr |
|
| 27 |
23 26
|
eqtr2d |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
adantl |
|
| 30 |
29
|
adantr |
|
| 31 |
|
negeq |
|
| 32 |
31
|
adantl |
|
| 33 |
3
|
recnd |
|
| 34 |
33
|
negnegd |
|
| 35 |
34
|
adantr |
|
| 36 |
32 35
|
eqtrd |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
adantlr |
|
| 39 |
30 38
|
impbid |
|
| 40 |
20 39
|
rexbida |
|
| 41 |
40
|
adantr |
|
| 42 |
18 41
|
mpbid |
|
| 43 |
|
simplr |
|
| 44 |
11 42 43
|
elrnmptd |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
rabss |
|
| 48 |
46 47
|
sylibr |
|
| 49 |
|
nfcv |
|
| 50 |
|
nfmpt1 |
|
| 51 |
50
|
nfrn |
|
| 52 |
49 51
|
nfel |
|
| 53 |
|
nfcv |
|
| 54 |
52 53
|
nfrabw |
|
| 55 |
31
|
eleq1d |
|
| 56 |
3
|
renegcld |
|
| 57 |
|
simpr |
|
| 58 |
5
|
elrnmpt1 |
|
| 59 |
57 3 58
|
syl2anc |
|
| 60 |
34 59
|
eqeltrd |
|
| 61 |
55 56 60
|
elrabd |
|
| 62 |
1 54 11 61
|
rnmptssdf |
|
| 63 |
48 62
|
eqssd |
|
| 64 |
63
|
infeq1d |
|
| 65 |
64
|
negeqd |
|
| 66 |
10 65
|
eqtrd |
|