Metamath Proof Explorer


Theorem supminfrnmpt

Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses supminfrnmpt.x x φ
supminfrnmpt.a φ A
supminfrnmpt.b φ x A B
supminfrnmpt.y φ y x A B y
Assertion supminfrnmpt φ sup ran x A B < = sup ran x A B <

Proof

Step Hyp Ref Expression
1 supminfrnmpt.x x φ
2 supminfrnmpt.a φ A
3 supminfrnmpt.b φ x A B
4 supminfrnmpt.y φ y x A B y
5 eqid x A B = x A B
6 1 5 3 rnmptssd φ ran x A B
7 1 3 5 2 rnmptn0 φ ran x A B
8 1 4 rnmptbdd φ y z ran x A B z y
9 supminf ran x A B ran x A B y z ran x A B z y sup ran x A B < = sup w | w ran x A B <
10 6 7 8 9 syl3anc φ sup ran x A B < = sup w | w ran x A B <
11 eqid x A B = x A B
12 simpr w w ran x A B w ran x A B
13 renegcl w w
14 5 elrnmpt w w ran x A B x A w = B
15 13 14 syl w w ran x A B x A w = B
16 15 adantr w w ran x A B w ran x A B x A w = B
17 12 16 mpbid w w ran x A B x A w = B
18 17 adantll φ w w ran x A B x A w = B
19 nfv x w
20 1 19 nfan x φ w
21 negeq w = B w = B
22 21 eqcomd w = B B = w
23 22 adantl w w = B B = w
24 recn w w
25 24 negnegd w w = w
26 25 adantr w w = B w = w
27 23 26 eqtr2d w w = B w = B
28 27 ex w w = B w = B
29 28 adantl φ w w = B w = B
30 29 adantr φ w x A w = B w = B
31 negeq w = B w = B
32 31 adantl φ x A w = B w = B
33 3 recnd φ x A B
34 33 negnegd φ x A B = B
35 34 adantr φ x A w = B B = B
36 32 35 eqtrd φ x A w = B w = B
37 36 ex φ x A w = B w = B
38 37 adantlr φ w x A w = B w = B
39 30 38 impbid φ w x A w = B w = B
40 20 39 rexbida φ w x A w = B x A w = B
41 40 adantr φ w w ran x A B x A w = B x A w = B
42 18 41 mpbid φ w w ran x A B x A w = B
43 simplr φ w w ran x A B w
44 11 42 43 elrnmptd φ w w ran x A B w ran x A B
45 44 ex φ w w ran x A B w ran x A B
46 45 ralrimiva φ w w ran x A B w ran x A B
47 rabss w | w ran x A B ran x A B w w ran x A B w ran x A B
48 46 47 sylibr φ w | w ran x A B ran x A B
49 nfcv _ x w
50 nfmpt1 _ x x A B
51 50 nfrn _ x ran x A B
52 49 51 nfel x w ran x A B
53 nfcv _ x
54 52 53 nfrabw _ x w | w ran x A B
55 31 eleq1d w = B w ran x A B B ran x A B
56 3 renegcld φ x A B
57 simpr φ x A x A
58 5 elrnmpt1 x A B B ran x A B
59 57 3 58 syl2anc φ x A B ran x A B
60 34 59 eqeltrd φ x A B ran x A B
61 55 56 60 elrabd φ x A B w | w ran x A B
62 1 54 11 61 rnmptssdf φ ran x A B w | w ran x A B
63 48 62 eqssd φ w | w ran x A B = ran x A B
64 63 infeq1d φ sup w | w ran x A B < = sup ran x A B <
65 64 negeqd φ sup w | w ran x A B < = sup ran x A B <
66 10 65 eqtrd φ sup ran x A B < = sup ran x A B <