Step |
Hyp |
Ref |
Expression |
1 |
|
ressxr |
|- RR C_ RR* |
2 |
|
sstr |
|- ( ( A C_ RR /\ RR C_ RR* ) -> A C_ RR* ) |
3 |
1 2
|
mpan2 |
|- ( A C_ RR -> A C_ RR* ) |
4 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
5 |
|
pnfxr |
|- +oo e. RR* |
6 |
|
xrltne |
|- ( ( sup ( A , RR* , < ) e. RR* /\ +oo e. RR* /\ sup ( A , RR* , < ) < +oo ) -> +oo =/= sup ( A , RR* , < ) ) |
7 |
5 6
|
mp3an2 |
|- ( ( sup ( A , RR* , < ) e. RR* /\ sup ( A , RR* , < ) < +oo ) -> +oo =/= sup ( A , RR* , < ) ) |
8 |
7
|
necomd |
|- ( ( sup ( A , RR* , < ) e. RR* /\ sup ( A , RR* , < ) < +oo ) -> sup ( A , RR* , < ) =/= +oo ) |
9 |
8
|
ex |
|- ( sup ( A , RR* , < ) e. RR* -> ( sup ( A , RR* , < ) < +oo -> sup ( A , RR* , < ) =/= +oo ) ) |
10 |
4 9
|
syl |
|- ( A C_ RR* -> ( sup ( A , RR* , < ) < +oo -> sup ( A , RR* , < ) =/= +oo ) ) |
11 |
|
supxrunb2 |
|- ( A C_ RR* -> ( A. x e. RR E. y e. A x < y <-> sup ( A , RR* , < ) = +oo ) ) |
12 |
|
ssel2 |
|- ( ( A C_ RR* /\ y e. A ) -> y e. RR* ) |
13 |
12
|
adantlr |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> y e. RR* ) |
14 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
15 |
14
|
ad2antlr |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> x e. RR* ) |
16 |
|
xrlenlt |
|- ( ( y e. RR* /\ x e. RR* ) -> ( y <_ x <-> -. x < y ) ) |
17 |
16
|
con2bid |
|- ( ( y e. RR* /\ x e. RR* ) -> ( x < y <-> -. y <_ x ) ) |
18 |
13 15 17
|
syl2anc |
|- ( ( ( A C_ RR* /\ x e. RR ) /\ y e. A ) -> ( x < y <-> -. y <_ x ) ) |
19 |
18
|
rexbidva |
|- ( ( A C_ RR* /\ x e. RR ) -> ( E. y e. A x < y <-> E. y e. A -. y <_ x ) ) |
20 |
|
rexnal |
|- ( E. y e. A -. y <_ x <-> -. A. y e. A y <_ x ) |
21 |
19 20
|
bitrdi |
|- ( ( A C_ RR* /\ x e. RR ) -> ( E. y e. A x < y <-> -. A. y e. A y <_ x ) ) |
22 |
21
|
ralbidva |
|- ( A C_ RR* -> ( A. x e. RR E. y e. A x < y <-> A. x e. RR -. A. y e. A y <_ x ) ) |
23 |
11 22
|
bitr3d |
|- ( A C_ RR* -> ( sup ( A , RR* , < ) = +oo <-> A. x e. RR -. A. y e. A y <_ x ) ) |
24 |
|
ralnex |
|- ( A. x e. RR -. A. y e. A y <_ x <-> -. E. x e. RR A. y e. A y <_ x ) |
25 |
23 24
|
bitrdi |
|- ( A C_ RR* -> ( sup ( A , RR* , < ) = +oo <-> -. E. x e. RR A. y e. A y <_ x ) ) |
26 |
25
|
necon2abid |
|- ( A C_ RR* -> ( E. x e. RR A. y e. A y <_ x <-> sup ( A , RR* , < ) =/= +oo ) ) |
27 |
10 26
|
sylibrd |
|- ( A C_ RR* -> ( sup ( A , RR* , < ) < +oo -> E. x e. RR A. y e. A y <_ x ) ) |
28 |
27
|
imp |
|- ( ( A C_ RR* /\ sup ( A , RR* , < ) < +oo ) -> E. x e. RR A. y e. A y <_ x ) |
29 |
3 28
|
sylan |
|- ( ( A C_ RR /\ sup ( A , RR* , < ) < +oo ) -> E. x e. RR A. y e. A y <_ x ) |
30 |
29
|
3adant2 |
|- ( ( A C_ RR /\ A =/= (/) /\ sup ( A , RR* , < ) < +oo ) -> E. x e. RR A. y e. A y <_ x ) |
31 |
|
supxrre |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR* , < ) = sup ( A , RR , < ) ) |
32 |
|
suprcl |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
33 |
31 32
|
eqeltrd |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR* , < ) e. RR ) |
34 |
30 33
|
syld3an3 |
|- ( ( A C_ RR /\ A =/= (/) /\ sup ( A , RR* , < ) < +oo ) -> sup ( A , RR* , < ) e. RR ) |