| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdccatin2.l |  |-  L = ( # ` A ) | 
						
							| 2 |  | lencl |  |-  ( B e. Word V -> ( # ` B ) e. NN0 ) | 
						
							| 3 |  | nn0le0eq0 |  |-  ( ( # ` B ) e. NN0 -> ( ( # ` B ) <_ 0 <-> ( # ` B ) = 0 ) ) | 
						
							| 4 | 3 | biimpd |  |-  ( ( # ` B ) e. NN0 -> ( ( # ` B ) <_ 0 -> ( # ` B ) = 0 ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( B e. Word V -> ( ( # ` B ) <_ 0 -> ( # ` B ) = 0 ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` B ) <_ 0 -> ( # ` B ) = 0 ) ) | 
						
							| 7 |  | hasheq0 |  |-  ( B e. Word V -> ( ( # ` B ) = 0 <-> B = (/) ) ) | 
						
							| 8 | 7 | biimpd |  |-  ( B e. Word V -> ( ( # ` B ) = 0 -> B = (/) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` B ) = 0 -> B = (/) ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) -> B = (/) ) | 
						
							| 11 |  | lencl |  |-  ( A e. Word V -> ( # ` A ) e. NN0 ) | 
						
							| 12 | 1 | eqcomi |  |-  ( # ` A ) = L | 
						
							| 13 | 12 | eleq1i |  |-  ( ( # ` A ) e. NN0 <-> L e. NN0 ) | 
						
							| 14 |  | nn0re |  |-  ( L e. NN0 -> L e. RR ) | 
						
							| 15 |  | elfz2nn0 |  |-  ( M e. ( 0 ... ( L + 0 ) ) <-> ( M e. NN0 /\ ( L + 0 ) e. NN0 /\ M <_ ( L + 0 ) ) ) | 
						
							| 16 |  | recn |  |-  ( L e. RR -> L e. CC ) | 
						
							| 17 | 16 | addridd |  |-  ( L e. RR -> ( L + 0 ) = L ) | 
						
							| 18 | 17 | breq2d |  |-  ( L e. RR -> ( M <_ ( L + 0 ) <-> M <_ L ) ) | 
						
							| 19 |  | nn0re |  |-  ( M e. NN0 -> M e. RR ) | 
						
							| 20 | 19 | anim1i |  |-  ( ( M e. NN0 /\ L e. RR ) -> ( M e. RR /\ L e. RR ) ) | 
						
							| 21 | 20 | ancoms |  |-  ( ( L e. RR /\ M e. NN0 ) -> ( M e. RR /\ L e. RR ) ) | 
						
							| 22 |  | letri3 |  |-  ( ( M e. RR /\ L e. RR ) -> ( M = L <-> ( M <_ L /\ L <_ M ) ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( L e. RR /\ M e. NN0 ) -> ( M = L <-> ( M <_ L /\ L <_ M ) ) ) | 
						
							| 24 | 23 | biimprd |  |-  ( ( L e. RR /\ M e. NN0 ) -> ( ( M <_ L /\ L <_ M ) -> M = L ) ) | 
						
							| 25 | 24 | exp4b |  |-  ( L e. RR -> ( M e. NN0 -> ( M <_ L -> ( L <_ M -> M = L ) ) ) ) | 
						
							| 26 | 25 | com23 |  |-  ( L e. RR -> ( M <_ L -> ( M e. NN0 -> ( L <_ M -> M = L ) ) ) ) | 
						
							| 27 | 18 26 | sylbid |  |-  ( L e. RR -> ( M <_ ( L + 0 ) -> ( M e. NN0 -> ( L <_ M -> M = L ) ) ) ) | 
						
							| 28 | 27 | com3l |  |-  ( M <_ ( L + 0 ) -> ( M e. NN0 -> ( L e. RR -> ( L <_ M -> M = L ) ) ) ) | 
						
							| 29 | 28 | impcom |  |-  ( ( M e. NN0 /\ M <_ ( L + 0 ) ) -> ( L e. RR -> ( L <_ M -> M = L ) ) ) | 
						
							| 30 | 29 | 3adant2 |  |-  ( ( M e. NN0 /\ ( L + 0 ) e. NN0 /\ M <_ ( L + 0 ) ) -> ( L e. RR -> ( L <_ M -> M = L ) ) ) | 
						
							| 31 | 30 | com12 |  |-  ( L e. RR -> ( ( M e. NN0 /\ ( L + 0 ) e. NN0 /\ M <_ ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) | 
						
							| 32 | 15 31 | biimtrid |  |-  ( L e. RR -> ( M e. ( 0 ... ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) | 
						
							| 33 | 14 32 | syl |  |-  ( L e. NN0 -> ( M e. ( 0 ... ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) | 
						
							| 34 | 13 33 | sylbi |  |-  ( ( # ` A ) e. NN0 -> ( M e. ( 0 ... ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) | 
						
							| 35 | 11 34 | syl |  |-  ( A e. Word V -> ( M e. ( 0 ... ( L + 0 ) ) -> ( L <_ M -> M = L ) ) ) | 
						
							| 36 | 35 | imp |  |-  ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> ( L <_ M -> M = L ) ) | 
						
							| 37 |  | elfznn0 |  |-  ( M e. ( 0 ... ( L + 0 ) ) -> M e. NN0 ) | 
						
							| 38 |  | swrd00 |  |-  ( (/) substr <. 0 , 0 >. ) = (/) | 
						
							| 39 |  | swrd00 |  |-  ( A substr <. L , L >. ) = (/) | 
						
							| 40 | 38 39 | eqtr4i |  |-  ( (/) substr <. 0 , 0 >. ) = ( A substr <. L , L >. ) | 
						
							| 41 |  | nn0cn |  |-  ( L e. NN0 -> L e. CC ) | 
						
							| 42 | 41 | subidd |  |-  ( L e. NN0 -> ( L - L ) = 0 ) | 
						
							| 43 | 42 | opeq1d |  |-  ( L e. NN0 -> <. ( L - L ) , 0 >. = <. 0 , 0 >. ) | 
						
							| 44 | 43 | oveq2d |  |-  ( L e. NN0 -> ( (/) substr <. ( L - L ) , 0 >. ) = ( (/) substr <. 0 , 0 >. ) ) | 
						
							| 45 | 41 | addridd |  |-  ( L e. NN0 -> ( L + 0 ) = L ) | 
						
							| 46 | 45 | opeq2d |  |-  ( L e. NN0 -> <. L , ( L + 0 ) >. = <. L , L >. ) | 
						
							| 47 | 46 | oveq2d |  |-  ( L e. NN0 -> ( A substr <. L , ( L + 0 ) >. ) = ( A substr <. L , L >. ) ) | 
						
							| 48 | 40 44 47 | 3eqtr4a |  |-  ( L e. NN0 -> ( (/) substr <. ( L - L ) , 0 >. ) = ( A substr <. L , ( L + 0 ) >. ) ) | 
						
							| 49 | 48 | a1i |  |-  ( M = L -> ( L e. NN0 -> ( (/) substr <. ( L - L ) , 0 >. ) = ( A substr <. L , ( L + 0 ) >. ) ) ) | 
						
							| 50 |  | eleq1 |  |-  ( M = L -> ( M e. NN0 <-> L e. NN0 ) ) | 
						
							| 51 |  | oveq1 |  |-  ( M = L -> ( M - L ) = ( L - L ) ) | 
						
							| 52 | 51 | opeq1d |  |-  ( M = L -> <. ( M - L ) , 0 >. = <. ( L - L ) , 0 >. ) | 
						
							| 53 | 52 | oveq2d |  |-  ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( (/) substr <. ( L - L ) , 0 >. ) ) | 
						
							| 54 |  | opeq1 |  |-  ( M = L -> <. M , ( L + 0 ) >. = <. L , ( L + 0 ) >. ) | 
						
							| 55 | 54 | oveq2d |  |-  ( M = L -> ( A substr <. M , ( L + 0 ) >. ) = ( A substr <. L , ( L + 0 ) >. ) ) | 
						
							| 56 | 53 55 | eqeq12d |  |-  ( M = L -> ( ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) <-> ( (/) substr <. ( L - L ) , 0 >. ) = ( A substr <. L , ( L + 0 ) >. ) ) ) | 
						
							| 57 | 49 50 56 | 3imtr4d |  |-  ( M = L -> ( M e. NN0 -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) | 
						
							| 58 | 57 | com12 |  |-  ( M e. NN0 -> ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) | 
						
							| 59 | 58 | a1d |  |-  ( M e. NN0 -> ( A e. Word V -> ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) ) | 
						
							| 60 | 37 59 | syl |  |-  ( M e. ( 0 ... ( L + 0 ) ) -> ( A e. Word V -> ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) ) | 
						
							| 61 | 60 | impcom |  |-  ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> ( M = L -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) | 
						
							| 62 | 36 61 | syld |  |-  ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> ( L <_ M -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) ) | 
						
							| 63 | 62 | imp |  |-  ( ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) /\ L <_ M ) -> ( (/) substr <. ( M - L ) , 0 >. ) = ( A substr <. M , ( L + 0 ) >. ) ) | 
						
							| 64 |  | swrdcl |  |-  ( A e. Word V -> ( A substr <. M , L >. ) e. Word V ) | 
						
							| 65 |  | ccatrid |  |-  ( ( A substr <. M , L >. ) e. Word V -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , L >. ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( A e. Word V -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , L >. ) ) | 
						
							| 67 | 13 41 | sylbi |  |-  ( ( # ` A ) e. NN0 -> L e. CC ) | 
						
							| 68 | 11 67 | syl |  |-  ( A e. Word V -> L e. CC ) | 
						
							| 69 |  | addrid |  |-  ( L e. CC -> ( L + 0 ) = L ) | 
						
							| 70 | 69 | eqcomd |  |-  ( L e. CC -> L = ( L + 0 ) ) | 
						
							| 71 | 68 70 | syl |  |-  ( A e. Word V -> L = ( L + 0 ) ) | 
						
							| 72 | 71 | opeq2d |  |-  ( A e. Word V -> <. M , L >. = <. M , ( L + 0 ) >. ) | 
						
							| 73 | 72 | oveq2d |  |-  ( A e. Word V -> ( A substr <. M , L >. ) = ( A substr <. M , ( L + 0 ) >. ) ) | 
						
							| 74 | 66 73 | eqtrd |  |-  ( A e. Word V -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , ( L + 0 ) >. ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , ( L + 0 ) >. ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) /\ -. L <_ M ) -> ( ( A substr <. M , L >. ) ++ (/) ) = ( A substr <. M , ( L + 0 ) >. ) ) | 
						
							| 77 | 63 76 | ifeqda |  |-  ( ( A e. Word V /\ M e. ( 0 ... ( L + 0 ) ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) | 
						
							| 78 | 77 | ex |  |-  ( A e. Word V -> ( M e. ( 0 ... ( L + 0 ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) | 
						
							| 79 | 78 | ad3antrrr |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) /\ B = (/) ) -> ( M e. ( 0 ... ( L + 0 ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) | 
						
							| 80 |  | oveq2 |  |-  ( ( # ` B ) = 0 -> ( L + ( # ` B ) ) = ( L + 0 ) ) | 
						
							| 81 | 80 | oveq2d |  |-  ( ( # ` B ) = 0 -> ( 0 ... ( L + ( # ` B ) ) ) = ( 0 ... ( L + 0 ) ) ) | 
						
							| 82 | 81 | eleq2d |  |-  ( ( # ` B ) = 0 -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) <-> M e. ( 0 ... ( L + 0 ) ) ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) <-> M e. ( 0 ... ( L + 0 ) ) ) ) | 
						
							| 84 |  | simpr |  |-  ( ( ( # ` B ) = 0 /\ B = (/) ) -> B = (/) ) | 
						
							| 85 |  | opeq2 |  |-  ( ( # ` B ) = 0 -> <. ( M - L ) , ( # ` B ) >. = <. ( M - L ) , 0 >. ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ( # ` B ) = 0 /\ B = (/) ) -> <. ( M - L ) , ( # ` B ) >. = <. ( M - L ) , 0 >. ) | 
						
							| 87 | 84 86 | oveq12d |  |-  ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( B substr <. ( M - L ) , ( # ` B ) >. ) = ( (/) substr <. ( M - L ) , 0 >. ) ) | 
						
							| 88 |  | oveq2 |  |-  ( B = (/) -> ( ( A substr <. M , L >. ) ++ B ) = ( ( A substr <. M , L >. ) ++ (/) ) ) | 
						
							| 89 | 88 | adantl |  |-  ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( ( A substr <. M , L >. ) ++ B ) = ( ( A substr <. M , L >. ) ++ (/) ) ) | 
						
							| 90 | 87 89 | ifeq12d |  |-  ( ( ( # ` B ) = 0 /\ B = (/) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) ) | 
						
							| 91 | 80 | opeq2d |  |-  ( ( # ` B ) = 0 -> <. M , ( L + ( # ` B ) ) >. = <. M , ( L + 0 ) >. ) | 
						
							| 92 | 91 | oveq2d |  |-  ( ( # ` B ) = 0 -> ( A substr <. M , ( L + ( # ` B ) ) >. ) = ( A substr <. M , ( L + 0 ) >. ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( A substr <. M , ( L + ( # ` B ) ) >. ) = ( A substr <. M , ( L + 0 ) >. ) ) | 
						
							| 94 | 90 93 | eqeq12d |  |-  ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) <-> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) | 
						
							| 95 | 83 94 | imbi12d |  |-  ( ( ( # ` B ) = 0 /\ B = (/) ) -> ( ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) <-> ( M e. ( 0 ... ( L + 0 ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) ) | 
						
							| 96 | 95 | adantll |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) /\ B = (/) ) -> ( ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) <-> ( M e. ( 0 ... ( L + 0 ) ) -> if ( L <_ M , ( (/) substr <. ( M - L ) , 0 >. ) , ( ( A substr <. M , L >. ) ++ (/) ) ) = ( A substr <. M , ( L + 0 ) >. ) ) ) ) | 
						
							| 97 | 79 96 | mpbird |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) /\ B = (/) ) -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) | 
						
							| 98 | 10 97 | mpdan |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` B ) = 0 ) -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) | 
						
							| 99 | 98 | ex |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` B ) = 0 -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) | 
						
							| 100 | 6 99 | syld |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` B ) <_ 0 -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) | 
						
							| 101 | 100 | com23 |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( M e. ( 0 ... ( L + ( # ` B ) ) ) -> ( ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) | 
						
							| 102 | 101 | imp |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) /\ ( L + ( # ` B ) ) <_ L ) -> ( ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) | 
						
							| 104 | 1 | eleq1i |  |-  ( L e. NN0 <-> ( # ` A ) e. NN0 ) | 
						
							| 105 | 104 14 | sylbir |  |-  ( ( # ` A ) e. NN0 -> L e. RR ) | 
						
							| 106 | 11 105 | syl |  |-  ( A e. Word V -> L e. RR ) | 
						
							| 107 | 2 | nn0red |  |-  ( B e. Word V -> ( # ` B ) e. RR ) | 
						
							| 108 |  | leaddle0 |  |-  ( ( L e. RR /\ ( # ` B ) e. RR ) -> ( ( L + ( # ` B ) ) <_ L <-> ( # ` B ) <_ 0 ) ) | 
						
							| 109 | 106 107 108 | syl2an |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( L + ( # ` B ) ) <_ L <-> ( # ` B ) <_ 0 ) ) | 
						
							| 110 |  | pm2.24 |  |-  ( ( # ` B ) <_ 0 -> ( -. ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) | 
						
							| 111 | 109 110 | biimtrdi |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( L + ( # ` B ) ) <_ L -> ( -. ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) | 
						
							| 112 | 111 | adantr |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( L + ( # ` B ) ) <_ L -> ( -. ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) ) | 
						
							| 113 | 112 | imp |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) /\ ( L + ( # ` B ) ) <_ L ) -> ( -. ( # ` B ) <_ 0 -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) ) | 
						
							| 114 | 103 113 | pm2.61d |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ M e. ( 0 ... ( L + ( # ` B ) ) ) ) /\ ( L + ( # ` B ) ) <_ L ) -> if ( L <_ M , ( B substr <. ( M - L ) , ( # ` B ) >. ) , ( ( A substr <. M , L >. ) ++ B ) ) = ( A substr <. M , ( L + ( # ` B ) ) >. ) ) |