| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdccatin2.l | ⊢ 𝐿  =  ( ♯ ‘ 𝐴 ) | 
						
							| 2 |  | lencl | ⊢ ( 𝐵  ∈  Word  𝑉  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 3 |  | nn0le0eq0 | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝐵 )  ≤  0  ↔  ( ♯ ‘ 𝐵 )  =  0 ) ) | 
						
							| 4 | 3 | biimpd | ⊢ ( ( ♯ ‘ 𝐵 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝐵 )  ≤  0  →  ( ♯ ‘ 𝐵 )  =  0 ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝐵  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝐵 )  ≤  0  →  ( ♯ ‘ 𝐵 )  =  0 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝐵 )  ≤  0  →  ( ♯ ‘ 𝐵 )  =  0 ) ) | 
						
							| 7 |  | hasheq0 | ⊢ ( 𝐵  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝐵 )  =  0  ↔  𝐵  =  ∅ ) ) | 
						
							| 8 | 7 | biimpd | ⊢ ( 𝐵  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝐵 )  =  0  →  𝐵  =  ∅ ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝐵 )  =  0  →  𝐵  =  ∅ ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐵 )  =  0 )  →  𝐵  =  ∅ ) | 
						
							| 11 |  | lencl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 12 | 1 | eqcomi | ⊢ ( ♯ ‘ 𝐴 )  =  𝐿 | 
						
							| 13 | 12 | eleq1i | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  ↔  𝐿  ∈  ℕ0 ) | 
						
							| 14 |  | nn0re | ⊢ ( 𝐿  ∈  ℕ0  →  𝐿  ∈  ℝ ) | 
						
							| 15 |  | elfz2nn0 | ⊢ ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  ↔  ( 𝑀  ∈  ℕ0  ∧  ( 𝐿  +  0 )  ∈  ℕ0  ∧  𝑀  ≤  ( 𝐿  +  0 ) ) ) | 
						
							| 16 |  | recn | ⊢ ( 𝐿  ∈  ℝ  →  𝐿  ∈  ℂ ) | 
						
							| 17 | 16 | addridd | ⊢ ( 𝐿  ∈  ℝ  →  ( 𝐿  +  0 )  =  𝐿 ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝐿  ∈  ℝ  →  ( 𝑀  ≤  ( 𝐿  +  0 )  ↔  𝑀  ≤  𝐿 ) ) | 
						
							| 19 |  | nn0re | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℝ ) | 
						
							| 20 | 19 | anim1i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐿  ∈  ℝ )  →  ( 𝑀  ∈  ℝ  ∧  𝐿  ∈  ℝ ) ) | 
						
							| 21 | 20 | ancoms | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  ∈  ℝ  ∧  𝐿  ∈  ℝ ) ) | 
						
							| 22 |  | letri3 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝐿  ∈  ℝ )  →  ( 𝑀  =  𝐿  ↔  ( 𝑀  ≤  𝐿  ∧  𝐿  ≤  𝑀 ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  =  𝐿  ↔  ( 𝑀  ≤  𝐿  ∧  𝐿  ≤  𝑀 ) ) ) | 
						
							| 24 | 23 | biimprd | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑀  ≤  𝐿  ∧  𝐿  ≤  𝑀 )  →  𝑀  =  𝐿 ) ) | 
						
							| 25 | 24 | exp4b | ⊢ ( 𝐿  ∈  ℝ  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝐿  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) ) | 
						
							| 26 | 25 | com23 | ⊢ ( 𝐿  ∈  ℝ  →  ( 𝑀  ≤  𝐿  →  ( 𝑀  ∈  ℕ0  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) ) | 
						
							| 27 | 18 26 | sylbid | ⊢ ( 𝐿  ∈  ℝ  →  ( 𝑀  ≤  ( 𝐿  +  0 )  →  ( 𝑀  ∈  ℕ0  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) ) | 
						
							| 28 | 27 | com3l | ⊢ ( 𝑀  ≤  ( 𝐿  +  0 )  →  ( 𝑀  ∈  ℕ0  →  ( 𝐿  ∈  ℝ  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) ) | 
						
							| 29 | 28 | impcom | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≤  ( 𝐿  +  0 ) )  →  ( 𝐿  ∈  ℝ  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) | 
						
							| 30 | 29 | 3adant2 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ( 𝐿  +  0 )  ∈  ℕ0  ∧  𝑀  ≤  ( 𝐿  +  0 ) )  →  ( 𝐿  ∈  ℝ  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) | 
						
							| 31 | 30 | com12 | ⊢ ( 𝐿  ∈  ℝ  →  ( ( 𝑀  ∈  ℕ0  ∧  ( 𝐿  +  0 )  ∈  ℕ0  ∧  𝑀  ≤  ( 𝐿  +  0 ) )  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) | 
						
							| 32 | 15 31 | biimtrid | ⊢ ( 𝐿  ∈  ℝ  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) | 
						
							| 33 | 14 32 | syl | ⊢ ( 𝐿  ∈  ℕ0  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) | 
						
							| 34 | 13 33 | sylbi | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) | 
						
							| 35 | 11 34 | syl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) ) )  →  ( 𝐿  ≤  𝑀  →  𝑀  =  𝐿 ) ) | 
						
							| 37 |  | elfznn0 | ⊢ ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 38 |  | swrd00 | ⊢ ( ∅  substr  〈 0 ,  0 〉 )  =  ∅ | 
						
							| 39 |  | swrd00 | ⊢ ( 𝐴  substr  〈 𝐿 ,  𝐿 〉 )  =  ∅ | 
						
							| 40 | 38 39 | eqtr4i | ⊢ ( ∅  substr  〈 0 ,  0 〉 )  =  ( 𝐴  substr  〈 𝐿 ,  𝐿 〉 ) | 
						
							| 41 |  | nn0cn | ⊢ ( 𝐿  ∈  ℕ0  →  𝐿  ∈  ℂ ) | 
						
							| 42 | 41 | subidd | ⊢ ( 𝐿  ∈  ℕ0  →  ( 𝐿  −  𝐿 )  =  0 ) | 
						
							| 43 | 42 | opeq1d | ⊢ ( 𝐿  ∈  ℕ0  →  〈 ( 𝐿  −  𝐿 ) ,  0 〉  =  〈 0 ,  0 〉 ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝐿  ∈  ℕ0  →  ( ∅  substr  〈 ( 𝐿  −  𝐿 ) ,  0 〉 )  =  ( ∅  substr  〈 0 ,  0 〉 ) ) | 
						
							| 45 | 41 | addridd | ⊢ ( 𝐿  ∈  ℕ0  →  ( 𝐿  +  0 )  =  𝐿 ) | 
						
							| 46 | 45 | opeq2d | ⊢ ( 𝐿  ∈  ℕ0  →  〈 𝐿 ,  ( 𝐿  +  0 ) 〉  =  〈 𝐿 ,  𝐿 〉 ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( 𝐿  ∈  ℕ0  →  ( 𝐴  substr  〈 𝐿 ,  ( 𝐿  +  0 ) 〉 )  =  ( 𝐴  substr  〈 𝐿 ,  𝐿 〉 ) ) | 
						
							| 48 | 40 44 47 | 3eqtr4a | ⊢ ( 𝐿  ∈  ℕ0  →  ( ∅  substr  〈 ( 𝐿  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝐿 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 49 | 48 | a1i | ⊢ ( 𝑀  =  𝐿  →  ( 𝐿  ∈  ℕ0  →  ( ∅  substr  〈 ( 𝐿  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝐿 ,  ( 𝐿  +  0 ) 〉 ) ) ) | 
						
							| 50 |  | eleq1 | ⊢ ( 𝑀  =  𝐿  →  ( 𝑀  ∈  ℕ0  ↔  𝐿  ∈  ℕ0 ) ) | 
						
							| 51 |  | oveq1 | ⊢ ( 𝑀  =  𝐿  →  ( 𝑀  −  𝐿 )  =  ( 𝐿  −  𝐿 ) ) | 
						
							| 52 | 51 | opeq1d | ⊢ ( 𝑀  =  𝐿  →  〈 ( 𝑀  −  𝐿 ) ,  0 〉  =  〈 ( 𝐿  −  𝐿 ) ,  0 〉 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝑀  =  𝐿  →  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 )  =  ( ∅  substr  〈 ( 𝐿  −  𝐿 ) ,  0 〉 ) ) | 
						
							| 54 |  | opeq1 | ⊢ ( 𝑀  =  𝐿  →  〈 𝑀 ,  ( 𝐿  +  0 ) 〉  =  〈 𝐿 ,  ( 𝐿  +  0 ) 〉 ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( 𝑀  =  𝐿  →  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 )  =  ( 𝐴  substr  〈 𝐿 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 56 | 53 55 | eqeq12d | ⊢ ( 𝑀  =  𝐿  →  ( ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 )  ↔  ( ∅  substr  〈 ( 𝐿  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝐿 ,  ( 𝐿  +  0 ) 〉 ) ) ) | 
						
							| 57 | 49 50 56 | 3imtr4d | ⊢ ( 𝑀  =  𝐿  →  ( 𝑀  ∈  ℕ0  →  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) | 
						
							| 58 | 57 | com12 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  =  𝐿  →  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) | 
						
							| 59 | 58 | a1d | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝐴  ∈  Word  𝑉  →  ( 𝑀  =  𝐿  →  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) ) | 
						
							| 60 | 37 59 | syl | ⊢ ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  ( 𝐴  ∈  Word  𝑉  →  ( 𝑀  =  𝐿  →  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) ) | 
						
							| 61 | 60 | impcom | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) ) )  →  ( 𝑀  =  𝐿  →  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) | 
						
							| 62 | 36 61 | syld | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) ) )  →  ( 𝐿  ≤  𝑀  →  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) | 
						
							| 63 | 62 | imp | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) ) )  ∧  𝐿  ≤  𝑀 )  →  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 64 |  | swrdcl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ∈  Word  𝑉 ) | 
						
							| 65 |  | ccatrid | ⊢ ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ∈  Word  𝑉  →  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ )  =  ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ )  =  ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 ) ) | 
						
							| 67 | 13 41 | sylbi | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  𝐿  ∈  ℂ ) | 
						
							| 68 | 11 67 | syl | ⊢ ( 𝐴  ∈  Word  𝑉  →  𝐿  ∈  ℂ ) | 
						
							| 69 |  | addrid | ⊢ ( 𝐿  ∈  ℂ  →  ( 𝐿  +  0 )  =  𝐿 ) | 
						
							| 70 | 69 | eqcomd | ⊢ ( 𝐿  ∈  ℂ  →  𝐿  =  ( 𝐿  +  0 ) ) | 
						
							| 71 | 68 70 | syl | ⊢ ( 𝐴  ∈  Word  𝑉  →  𝐿  =  ( 𝐿  +  0 ) ) | 
						
							| 72 | 71 | opeq2d | ⊢ ( 𝐴  ∈  Word  𝑉  →  〈 𝑀 ,  𝐿 〉  =  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) | 
						
							| 73 | 72 | oveq2d | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 74 | 66 73 | eqtrd | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) ) )  →  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) ) )  ∧  ¬  𝐿  ≤  𝑀 )  →  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 77 | 63 76 | ifeqda | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) ) )  →  if ( 𝐿  ≤  𝑀 ,  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 78 | 77 | ex | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  if ( 𝐿  ≤  𝑀 ,  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) | 
						
							| 79 | 78 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐵 )  =  0 )  ∧  𝐵  =  ∅ )  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  if ( 𝐿  ≤  𝑀 ,  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) | 
						
							| 80 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝐵 )  =  0  →  ( 𝐿  +  ( ♯ ‘ 𝐵 ) )  =  ( 𝐿  +  0 ) ) | 
						
							| 81 | 80 | oveq2d | ⊢ ( ( ♯ ‘ 𝐵 )  =  0  →  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  =  ( 0 ... ( 𝐿  +  0 ) ) ) | 
						
							| 82 | 81 | eleq2d | ⊢ ( ( ♯ ‘ 𝐵 )  =  0  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  ↔  𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) ) ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( ♯ ‘ 𝐵 )  =  0  ∧  𝐵  =  ∅ )  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  ↔  𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) ) ) ) | 
						
							| 84 |  | simpr | ⊢ ( ( ( ♯ ‘ 𝐵 )  =  0  ∧  𝐵  =  ∅ )  →  𝐵  =  ∅ ) | 
						
							| 85 |  | opeq2 | ⊢ ( ( ♯ ‘ 𝐵 )  =  0  →  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉  =  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ( ♯ ‘ 𝐵 )  =  0  ∧  𝐵  =  ∅ )  →  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉  =  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) | 
						
							| 87 | 84 86 | oveq12d | ⊢ ( ( ( ♯ ‘ 𝐵 )  =  0  ∧  𝐵  =  ∅ )  →  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 )  =  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) ) | 
						
							| 88 |  | oveq2 | ⊢ ( 𝐵  =  ∅  →  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 )  =  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ ) ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( ( ♯ ‘ 𝐵 )  =  0  ∧  𝐵  =  ∅ )  →  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 )  =  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ ) ) | 
						
							| 90 | 87 89 | ifeq12d | ⊢ ( ( ( ♯ ‘ 𝐵 )  =  0  ∧  𝐵  =  ∅ )  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  if ( 𝐿  ≤  𝑀 ,  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ ) ) ) | 
						
							| 91 | 80 | opeq2d | ⊢ ( ( ♯ ‘ 𝐵 )  =  0  →  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉  =  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) | 
						
							| 92 | 91 | oveq2d | ⊢ ( ( ♯ ‘ 𝐵 )  =  0  →  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( ♯ ‘ 𝐵 )  =  0  ∧  𝐵  =  ∅ )  →  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) | 
						
							| 94 | 90 93 | eqeq12d | ⊢ ( ( ( ♯ ‘ 𝐵 )  =  0  ∧  𝐵  =  ∅ )  →  ( if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 )  ↔  if ( 𝐿  ≤  𝑀 ,  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) | 
						
							| 95 | 83 94 | imbi12d | ⊢ ( ( ( ♯ ‘ 𝐵 )  =  0  ∧  𝐵  =  ∅ )  →  ( ( 𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) )  ↔  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  if ( 𝐿  ≤  𝑀 ,  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) ) | 
						
							| 96 | 95 | adantll | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐵 )  =  0 )  ∧  𝐵  =  ∅ )  →  ( ( 𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) )  ↔  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  0 ) )  →  if ( 𝐿  ≤  𝑀 ,  ( ∅  substr  〈 ( 𝑀  −  𝐿 ) ,  0 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  ∅ ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  0 ) 〉 ) ) ) ) | 
						
							| 97 | 79 96 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐵 )  =  0 )  ∧  𝐵  =  ∅ )  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) | 
						
							| 98 | 10 97 | mpdan | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐵 )  =  0 )  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) | 
						
							| 99 | 98 | ex | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝐵 )  =  0  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) | 
						
							| 100 | 6 99 | syld | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝐵 )  ≤  0  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) | 
						
							| 101 | 100 | com23 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( 𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  →  ( ( ♯ ‘ 𝐵 )  ≤  0  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) | 
						
							| 102 | 101 | imp | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) )  →  ( ( ♯ ‘ 𝐵 )  ≤  0  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) )  ∧  ( 𝐿  +  ( ♯ ‘ 𝐵 ) )  ≤  𝐿 )  →  ( ( ♯ ‘ 𝐵 )  ≤  0  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) | 
						
							| 104 | 1 | eleq1i | ⊢ ( 𝐿  ∈  ℕ0  ↔  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 105 | 104 14 | sylbir | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  𝐿  ∈  ℝ ) | 
						
							| 106 | 11 105 | syl | ⊢ ( 𝐴  ∈  Word  𝑉  →  𝐿  ∈  ℝ ) | 
						
							| 107 | 2 | nn0red | ⊢ ( 𝐵  ∈  Word  𝑉  →  ( ♯ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 108 |  | leaddle0 | ⊢ ( ( 𝐿  ∈  ℝ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℝ )  →  ( ( 𝐿  +  ( ♯ ‘ 𝐵 ) )  ≤  𝐿  ↔  ( ♯ ‘ 𝐵 )  ≤  0 ) ) | 
						
							| 109 | 106 107 108 | syl2an | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( 𝐿  +  ( ♯ ‘ 𝐵 ) )  ≤  𝐿  ↔  ( ♯ ‘ 𝐵 )  ≤  0 ) ) | 
						
							| 110 |  | pm2.24 | ⊢ ( ( ♯ ‘ 𝐵 )  ≤  0  →  ( ¬  ( ♯ ‘ 𝐵 )  ≤  0  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) | 
						
							| 111 | 109 110 | biimtrdi | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( 𝐿  +  ( ♯ ‘ 𝐵 ) )  ≤  𝐿  →  ( ¬  ( ♯ ‘ 𝐵 )  ≤  0  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) )  →  ( ( 𝐿  +  ( ♯ ‘ 𝐵 ) )  ≤  𝐿  →  ( ¬  ( ♯ ‘ 𝐵 )  ≤  0  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) | 
						
							| 113 | 112 | imp | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) )  ∧  ( 𝐿  +  ( ♯ ‘ 𝐵 ) )  ≤  𝐿 )  →  ( ¬  ( ♯ ‘ 𝐵 )  ≤  0  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) | 
						
							| 114 | 103 113 | pm2.61d | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  𝑀  ∈  ( 0 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) )  ∧  ( 𝐿  +  ( ♯ ‘ 𝐵 ) )  ≤  𝐿 )  →  if ( 𝐿  ≤  𝑀 ,  ( 𝐵  substr  〈 ( 𝑀  −  𝐿 ) ,  ( ♯ ‘ 𝐵 ) 〉 ) ,  ( ( 𝐴  substr  〈 𝑀 ,  𝐿 〉 )  ++  𝐵 ) )  =  ( 𝐴  substr  〈 𝑀 ,  ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) 〉 ) ) |