Step |
Hyp |
Ref |
Expression |
1 |
|
tworepnotupword.1 |
|- A e. _V |
2 |
|
ovex |
|- ( <" A "> ++ <" A "> ) e. _V |
3 |
|
c0ex |
|- 0 e. _V |
4 |
3
|
isseti |
|- E. k k = 0 |
5 |
|
0z |
|- 0 e. ZZ |
6 |
|
ccat2s1len |
|- ( # ` ( <" A "> ++ <" A "> ) ) = 2 |
7 |
6
|
oveq1i |
|- ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) = ( 2 - 1 ) |
8 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
9 |
7 8
|
eqtri |
|- ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) = 1 |
10 |
|
1z |
|- 1 e. ZZ |
11 |
9 10
|
eqeltri |
|- ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) e. ZZ |
12 |
|
0lt1 |
|- 0 < 1 |
13 |
12 9
|
breqtrri |
|- 0 < ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) |
14 |
|
fzolb |
|- ( 0 e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) <-> ( 0 e. ZZ /\ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) e. ZZ /\ 0 < ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) |
15 |
5 11 13 14
|
mpbir3an |
|- 0 e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) |
16 |
|
eleq1a |
|- ( 0 e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) -> ( k = 0 -> k e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) ) |
17 |
15 16
|
ax-mp |
|- ( k = 0 -> k e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) |
18 |
|
fveq2 |
|- ( b = ( <" A "> ++ <" A "> ) -> ( # ` b ) = ( # ` ( <" A "> ++ <" A "> ) ) ) |
19 |
18
|
oveq1d |
|- ( b = ( <" A "> ++ <" A "> ) -> ( ( # ` b ) - 1 ) = ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) |
20 |
19
|
oveq2d |
|- ( b = ( <" A "> ++ <" A "> ) -> ( 0 ..^ ( ( # ` b ) - 1 ) ) = ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) |
21 |
20
|
eleq2d |
|- ( b = ( <" A "> ++ <" A "> ) -> ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) <-> k e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) ) |
22 |
17 21
|
imbitrrid |
|- ( b = ( <" A "> ++ <" A "> ) -> ( k = 0 -> k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ) ) |
23 |
|
et-ltneverrefl |
|- -. A < A |
24 |
|
fveq1 |
|- ( b = ( <" A "> ++ <" A "> ) -> ( b ` 0 ) = ( ( <" A "> ++ <" A "> ) ` 0 ) ) |
25 |
|
ccat2s1p1 |
|- ( A e. _V -> ( ( <" A "> ++ <" A "> ) ` 0 ) = A ) |
26 |
1 25
|
ax-mp |
|- ( ( <" A "> ++ <" A "> ) ` 0 ) = A |
27 |
24 26
|
eqtrdi |
|- ( b = ( <" A "> ++ <" A "> ) -> ( b ` 0 ) = A ) |
28 |
|
fveq1 |
|- ( b = ( <" A "> ++ <" A "> ) -> ( b ` ( 0 + 1 ) ) = ( ( <" A "> ++ <" A "> ) ` ( 0 + 1 ) ) ) |
29 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
30 |
29
|
fveq2i |
|- ( ( <" A "> ++ <" A "> ) ` 1 ) = ( ( <" A "> ++ <" A "> ) ` ( 0 + 1 ) ) |
31 |
|
ccat2s1p2 |
|- ( A e. _V -> ( ( <" A "> ++ <" A "> ) ` 1 ) = A ) |
32 |
1 31
|
ax-mp |
|- ( ( <" A "> ++ <" A "> ) ` 1 ) = A |
33 |
30 32
|
eqtr3i |
|- ( ( <" A "> ++ <" A "> ) ` ( 0 + 1 ) ) = A |
34 |
28 33
|
eqtrdi |
|- ( b = ( <" A "> ++ <" A "> ) -> ( b ` ( 0 + 1 ) ) = A ) |
35 |
27 34
|
breq12d |
|- ( b = ( <" A "> ++ <" A "> ) -> ( ( b ` 0 ) < ( b ` ( 0 + 1 ) ) <-> A < A ) ) |
36 |
23 35
|
mtbiri |
|- ( b = ( <" A "> ++ <" A "> ) -> -. ( b ` 0 ) < ( b ` ( 0 + 1 ) ) ) |
37 |
|
fveq2 |
|- ( k = 0 -> ( b ` k ) = ( b ` 0 ) ) |
38 |
|
fvoveq1 |
|- ( k = 0 -> ( b ` ( k + 1 ) ) = ( b ` ( 0 + 1 ) ) ) |
39 |
37 38
|
breq12d |
|- ( k = 0 -> ( ( b ` k ) < ( b ` ( k + 1 ) ) <-> ( b ` 0 ) < ( b ` ( 0 + 1 ) ) ) ) |
40 |
39
|
biimpd |
|- ( k = 0 -> ( ( b ` k ) < ( b ` ( k + 1 ) ) -> ( b ` 0 ) < ( b ` ( 0 + 1 ) ) ) ) |
41 |
40
|
con3d |
|- ( k = 0 -> ( -. ( b ` 0 ) < ( b ` ( 0 + 1 ) ) -> -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) |
42 |
36 41
|
syl5com |
|- ( b = ( <" A "> ++ <" A "> ) -> ( k = 0 -> -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) |
43 |
22 42
|
jcad |
|- ( b = ( <" A "> ++ <" A "> ) -> ( k = 0 -> ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) ) |
44 |
43
|
eximdv |
|- ( b = ( <" A "> ++ <" A "> ) -> ( E. k k = 0 -> E. k ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) ) |
45 |
4 44
|
mpi |
|- ( b = ( <" A "> ++ <" A "> ) -> E. k ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) |
46 |
|
nfre1 |
|- F/ k E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) |
47 |
|
rspe |
|- ( ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) -> E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) ) |
48 |
46 47
|
exlimi |
|- ( E. k ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) -> E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) ) |
49 |
45 48
|
syl |
|- ( b = ( <" A "> ++ <" A "> ) -> E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) ) |
50 |
|
rexnal |
|- ( E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) <-> -. A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) |
51 |
49 50
|
sylib |
|- ( b = ( <" A "> ++ <" A "> ) -> -. A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) |
52 |
|
df-upword |
|- UpWord S = { b | ( b e. Word S /\ A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) } |
53 |
52
|
eqabri |
|- ( b e. UpWord S <-> ( b e. Word S /\ A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) ) |
54 |
53
|
simprbi |
|- ( b e. UpWord S -> A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) |
55 |
51 54
|
nsyl |
|- ( b = ( <" A "> ++ <" A "> ) -> -. b e. UpWord S ) |
56 |
|
eleq1 |
|- ( b = ( <" A "> ++ <" A "> ) -> ( b e. UpWord S <-> ( <" A "> ++ <" A "> ) e. UpWord S ) ) |
57 |
55 56
|
mtbid |
|- ( b = ( <" A "> ++ <" A "> ) -> -. ( <" A "> ++ <" A "> ) e. UpWord S ) |
58 |
2 57
|
vtocle |
|- -. ( <" A "> ++ <" A "> ) e. UpWord S |