| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tworepnotupword.1 |  |-  A e. _V | 
						
							| 2 |  | ovex |  |-  ( <" A "> ++ <" A "> ) e. _V | 
						
							| 3 |  | c0ex |  |-  0 e. _V | 
						
							| 4 | 3 | isseti |  |-  E. k k = 0 | 
						
							| 5 |  | 0z |  |-  0 e. ZZ | 
						
							| 6 |  | ccat2s1len |  |-  ( # ` ( <" A "> ++ <" A "> ) ) = 2 | 
						
							| 7 | 6 | oveq1i |  |-  ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) = ( 2 - 1 ) | 
						
							| 8 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 9 | 7 8 | eqtri |  |-  ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) = 1 | 
						
							| 10 |  | 1z |  |-  1 e. ZZ | 
						
							| 11 | 9 10 | eqeltri |  |-  ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) e. ZZ | 
						
							| 12 |  | 0lt1 |  |-  0 < 1 | 
						
							| 13 | 12 9 | breqtrri |  |-  0 < ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) | 
						
							| 14 |  | fzolb |  |-  ( 0 e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) <-> ( 0 e. ZZ /\ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) e. ZZ /\ 0 < ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) | 
						
							| 15 | 5 11 13 14 | mpbir3an |  |-  0 e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) | 
						
							| 16 |  | eleq1a |  |-  ( 0 e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) -> ( k = 0 -> k e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( k = 0 -> k e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( # ` b ) = ( # ` ( <" A "> ++ <" A "> ) ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( ( # ` b ) - 1 ) = ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( 0 ..^ ( ( # ` b ) - 1 ) ) = ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) | 
						
							| 21 | 20 | eleq2d |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) <-> k e. ( 0 ..^ ( ( # ` ( <" A "> ++ <" A "> ) ) - 1 ) ) ) ) | 
						
							| 22 | 17 21 | imbitrrid |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( k = 0 -> k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ) ) | 
						
							| 23 |  | et-ltneverrefl |  |-  -. A < A | 
						
							| 24 |  | fveq1 |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( b ` 0 ) = ( ( <" A "> ++ <" A "> ) ` 0 ) ) | 
						
							| 25 |  | ccat2s1p1 |  |-  ( A e. _V -> ( ( <" A "> ++ <" A "> ) ` 0 ) = A ) | 
						
							| 26 | 1 25 | ax-mp |  |-  ( ( <" A "> ++ <" A "> ) ` 0 ) = A | 
						
							| 27 | 24 26 | eqtrdi |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( b ` 0 ) = A ) | 
						
							| 28 |  | fveq1 |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( b ` ( 0 + 1 ) ) = ( ( <" A "> ++ <" A "> ) ` ( 0 + 1 ) ) ) | 
						
							| 29 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 30 | 29 | fveq2i |  |-  ( ( <" A "> ++ <" A "> ) ` 1 ) = ( ( <" A "> ++ <" A "> ) ` ( 0 + 1 ) ) | 
						
							| 31 |  | ccat2s1p2 |  |-  ( A e. _V -> ( ( <" A "> ++ <" A "> ) ` 1 ) = A ) | 
						
							| 32 | 1 31 | ax-mp |  |-  ( ( <" A "> ++ <" A "> ) ` 1 ) = A | 
						
							| 33 | 30 32 | eqtr3i |  |-  ( ( <" A "> ++ <" A "> ) ` ( 0 + 1 ) ) = A | 
						
							| 34 | 28 33 | eqtrdi |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( b ` ( 0 + 1 ) ) = A ) | 
						
							| 35 | 27 34 | breq12d |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( ( b ` 0 ) < ( b ` ( 0 + 1 ) ) <-> A < A ) ) | 
						
							| 36 | 23 35 | mtbiri |  |-  ( b = ( <" A "> ++ <" A "> ) -> -. ( b ` 0 ) < ( b ` ( 0 + 1 ) ) ) | 
						
							| 37 |  | fveq2 |  |-  ( k = 0 -> ( b ` k ) = ( b ` 0 ) ) | 
						
							| 38 |  | fvoveq1 |  |-  ( k = 0 -> ( b ` ( k + 1 ) ) = ( b ` ( 0 + 1 ) ) ) | 
						
							| 39 | 37 38 | breq12d |  |-  ( k = 0 -> ( ( b ` k ) < ( b ` ( k + 1 ) ) <-> ( b ` 0 ) < ( b ` ( 0 + 1 ) ) ) ) | 
						
							| 40 | 39 | biimpd |  |-  ( k = 0 -> ( ( b ` k ) < ( b ` ( k + 1 ) ) -> ( b ` 0 ) < ( b ` ( 0 + 1 ) ) ) ) | 
						
							| 41 | 40 | con3d |  |-  ( k = 0 -> ( -. ( b ` 0 ) < ( b ` ( 0 + 1 ) ) -> -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) | 
						
							| 42 | 36 41 | syl5com |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( k = 0 -> -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) | 
						
							| 43 | 22 42 | jcad |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( k = 0 -> ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) ) | 
						
							| 44 | 43 | eximdv |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( E. k k = 0 -> E. k ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) ) | 
						
							| 45 | 4 44 | mpi |  |-  ( b = ( <" A "> ++ <" A "> ) -> E. k ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) ) | 
						
							| 46 |  | nfre1 |  |-  F/ k E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) | 
						
							| 47 |  | rspe |  |-  ( ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) -> E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) ) | 
						
							| 48 | 46 47 | exlimi |  |-  ( E. k ( k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) /\ -. ( b ` k ) < ( b ` ( k + 1 ) ) ) -> E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) ) | 
						
							| 49 | 45 48 | syl |  |-  ( b = ( <" A "> ++ <" A "> ) -> E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) ) | 
						
							| 50 |  | rexnal |  |-  ( E. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) -. ( b ` k ) < ( b ` ( k + 1 ) ) <-> -. A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) | 
						
							| 51 | 49 50 | sylib |  |-  ( b = ( <" A "> ++ <" A "> ) -> -. A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) | 
						
							| 52 |  | df-upword |  |-  UpWord S = { b | ( b e. Word S /\ A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) } | 
						
							| 53 | 52 | eqabri |  |-  ( b e. UpWord S <-> ( b e. Word S /\ A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) ) | 
						
							| 54 | 53 | simprbi |  |-  ( b e. UpWord S -> A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) | 
						
							| 55 | 51 54 | nsyl |  |-  ( b = ( <" A "> ++ <" A "> ) -> -. b e. UpWord S ) | 
						
							| 56 |  | eleq1 |  |-  ( b = ( <" A "> ++ <" A "> ) -> ( b e. UpWord S <-> ( <" A "> ++ <" A "> ) e. UpWord S ) ) | 
						
							| 57 | 55 56 | mtbid |  |-  ( b = ( <" A "> ++ <" A "> ) -> -. ( <" A "> ++ <" A "> ) e. UpWord S ) | 
						
							| 58 | 2 57 | vtocle |  |-  -. ( <" A "> ++ <" A "> ) e. UpWord S |