Step |
Hyp |
Ref |
Expression |
1 |
|
tworepnotupword.1 |
⊢ 𝐴 ∈ V |
2 |
|
ovex |
⊢ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ∈ V |
3 |
|
c0ex |
⊢ 0 ∈ V |
4 |
3
|
isseti |
⊢ ∃ 𝑘 𝑘 = 0 |
5 |
|
0z |
⊢ 0 ∈ ℤ |
6 |
|
ccat2s1len |
⊢ ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) = 2 |
7 |
6
|
oveq1i |
⊢ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) = ( 2 − 1 ) |
8 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
9 |
7 8
|
eqtri |
⊢ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) = 1 |
10 |
|
1z |
⊢ 1 ∈ ℤ |
11 |
9 10
|
eqeltri |
⊢ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ∈ ℤ |
12 |
|
0lt1 |
⊢ 0 < 1 |
13 |
12 9
|
breqtrri |
⊢ 0 < ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) |
14 |
|
fzolb |
⊢ ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ) ↔ ( 0 ∈ ℤ ∧ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ∈ ℤ ∧ 0 < ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ) ) |
15 |
5 11 13 14
|
mpbir3an |
⊢ 0 ∈ ( 0 ..^ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ) |
16 |
|
eleq1a |
⊢ ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ) → ( 𝑘 = 0 → 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ) ) ) |
17 |
15 16
|
ax-mp |
⊢ ( 𝑘 = 0 → 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( ( ♯ ‘ 𝑏 ) − 1 ) = ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) = ( 0 ..^ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ) ) |
21 |
20
|
eleq2d |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ↔ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ) − 1 ) ) ) ) |
22 |
17 21
|
imbitrrid |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 𝑘 = 0 → 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ) ) |
23 |
|
et-ltneverrefl |
⊢ ¬ 𝐴 < 𝐴 |
24 |
|
fveq1 |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 𝑏 ‘ 0 ) = ( ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ‘ 0 ) ) |
25 |
|
ccat2s1p1 |
⊢ ( 𝐴 ∈ V → ( ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ‘ 0 ) = 𝐴 ) |
26 |
1 25
|
ax-mp |
⊢ ( ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ‘ 0 ) = 𝐴 |
27 |
24 26
|
eqtrdi |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 𝑏 ‘ 0 ) = 𝐴 ) |
28 |
|
fveq1 |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 𝑏 ‘ ( 0 + 1 ) ) = ( ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ‘ ( 0 + 1 ) ) ) |
29 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
30 |
29
|
fveq2i |
⊢ ( ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ‘ 1 ) = ( ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ‘ ( 0 + 1 ) ) |
31 |
|
ccat2s1p2 |
⊢ ( 𝐴 ∈ V → ( ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ‘ 1 ) = 𝐴 ) |
32 |
1 31
|
ax-mp |
⊢ ( ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ‘ 1 ) = 𝐴 |
33 |
30 32
|
eqtr3i |
⊢ ( ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ‘ ( 0 + 1 ) ) = 𝐴 |
34 |
28 33
|
eqtrdi |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 𝑏 ‘ ( 0 + 1 ) ) = 𝐴 ) |
35 |
27 34
|
breq12d |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( ( 𝑏 ‘ 0 ) < ( 𝑏 ‘ ( 0 + 1 ) ) ↔ 𝐴 < 𝐴 ) ) |
36 |
23 35
|
mtbiri |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ¬ ( 𝑏 ‘ 0 ) < ( 𝑏 ‘ ( 0 + 1 ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑏 ‘ 𝑘 ) = ( 𝑏 ‘ 0 ) ) |
38 |
|
fvoveq1 |
⊢ ( 𝑘 = 0 → ( 𝑏 ‘ ( 𝑘 + 1 ) ) = ( 𝑏 ‘ ( 0 + 1 ) ) ) |
39 |
37 38
|
breq12d |
⊢ ( 𝑘 = 0 → ( ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑏 ‘ 0 ) < ( 𝑏 ‘ ( 0 + 1 ) ) ) ) |
40 |
39
|
biimpd |
⊢ ( 𝑘 = 0 → ( ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) → ( 𝑏 ‘ 0 ) < ( 𝑏 ‘ ( 0 + 1 ) ) ) ) |
41 |
40
|
con3d |
⊢ ( 𝑘 = 0 → ( ¬ ( 𝑏 ‘ 0 ) < ( 𝑏 ‘ ( 0 + 1 ) ) → ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) ) |
42 |
36 41
|
syl5com |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 𝑘 = 0 → ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) ) |
43 |
22 42
|
jcad |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 𝑘 = 0 → ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ∧ ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) ) ) |
44 |
43
|
eximdv |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( ∃ 𝑘 𝑘 = 0 → ∃ 𝑘 ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ∧ ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) ) ) |
45 |
4 44
|
mpi |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ∃ 𝑘 ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ∧ ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) ) |
46 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) |
47 |
|
rspe |
⊢ ( ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ∧ ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) → ∃ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) |
48 |
46 47
|
exlimi |
⊢ ( ∃ 𝑘 ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ∧ ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) → ∃ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) |
49 |
45 48
|
syl |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ∃ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) |
50 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ¬ ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ↔ ¬ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) |
51 |
49 50
|
sylib |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ¬ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) |
52 |
|
df-upword |
⊢ UpWord 𝑆 = { 𝑏 ∣ ( 𝑏 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) } |
53 |
52
|
eqabri |
⊢ ( 𝑏 ∈ UpWord 𝑆 ↔ ( 𝑏 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) ) |
54 |
53
|
simprbi |
⊢ ( 𝑏 ∈ UpWord 𝑆 → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ( 𝑏 ‘ 𝑘 ) < ( 𝑏 ‘ ( 𝑘 + 1 ) ) ) |
55 |
51 54
|
nsyl |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ¬ 𝑏 ∈ UpWord 𝑆 ) |
56 |
|
eleq1 |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ( 𝑏 ∈ UpWord 𝑆 ↔ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ∈ UpWord 𝑆 ) ) |
57 |
55 56
|
mtbid |
⊢ ( 𝑏 = ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) → ¬ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ∈ UpWord 𝑆 ) |
58 |
2 57
|
vtocle |
⊢ ¬ ( ⟨“ 𝐴 ”⟩ ++ ⟨“ 𝐴 ”⟩ ) ∈ UpWord 𝑆 |