Metamath Proof Explorer


Theorem uniiccvol

Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun .) (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Hypotheses uniioombl.1
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) )
uniioombl.2
|- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) )
uniioombl.3
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) )
Assertion uniiccvol
|- ( ph -> ( vol* ` U. ran ( [,] o. F ) ) = sup ( ran S , RR* , < ) )

Proof

Step Hyp Ref Expression
1 uniioombl.1
 |-  ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) )
2 uniioombl.2
 |-  ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) )
3 uniioombl.3
 |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) )
4 ovolficcss
 |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR )
5 1 4 syl
 |-  ( ph -> U. ran ( [,] o. F ) C_ RR )
6 ovolcl
 |-  ( U. ran ( [,] o. F ) C_ RR -> ( vol* ` U. ran ( [,] o. F ) ) e. RR* )
7 5 6 syl
 |-  ( ph -> ( vol* ` U. ran ( [,] o. F ) ) e. RR* )
8 eqid
 |-  ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F )
9 8 3 ovolsf
 |-  ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) )
10 1 9 syl
 |-  ( ph -> S : NN --> ( 0 [,) +oo ) )
11 10 frnd
 |-  ( ph -> ran S C_ ( 0 [,) +oo ) )
12 icossxr
 |-  ( 0 [,) +oo ) C_ RR*
13 11 12 sstrdi
 |-  ( ph -> ran S C_ RR* )
14 supxrcl
 |-  ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* )
15 13 14 syl
 |-  ( ph -> sup ( ran S , RR* , < ) e. RR* )
16 ssid
 |-  U. ran ( [,] o. F ) C_ U. ran ( [,] o. F )
17 3 ovollb2
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( [,] o. F ) C_ U. ran ( [,] o. F ) ) -> ( vol* ` U. ran ( [,] o. F ) ) <_ sup ( ran S , RR* , < ) )
18 1 16 17 sylancl
 |-  ( ph -> ( vol* ` U. ran ( [,] o. F ) ) <_ sup ( ran S , RR* , < ) )
19 1 2 3 uniioovol
 |-  ( ph -> ( vol* ` U. ran ( (,) o. F ) ) = sup ( ran S , RR* , < ) )
20 ioossicc
 |-  ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) C_ ( ( 1st ` ( F ` x ) ) [,] ( 2nd ` ( F ` x ) ) )
21 df-ov
 |-  ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. )
22 df-ov
 |-  ( ( 1st ` ( F ` x ) ) [,] ( 2nd ` ( F ` x ) ) ) = ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. )
23 20 21 22 3sstr3i
 |-  ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) C_ ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. )
24 23 a1i
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) C_ ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) )
25 ffvelrn
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) e. ( <_ i^i ( RR X. RR ) ) )
26 25 elin2d
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) e. ( RR X. RR ) )
27 1st2nd2
 |-  ( ( F ` x ) e. ( RR X. RR ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. )
28 26 27 syl
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. )
29 28 fveq2d
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( (,) ` ( F ` x ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) )
30 28 fveq2d
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( [,] ` ( F ` x ) ) = ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) )
31 24 29 30 3sstr4d
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( (,) ` ( F ` x ) ) C_ ( [,] ` ( F ` x ) ) )
32 fvco3
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( (,) o. F ) ` x ) = ( (,) ` ( F ` x ) ) )
33 fvco3
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( [,] o. F ) ` x ) = ( [,] ` ( F ` x ) ) )
34 31 32 33 3sstr4d
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) )
35 1 34 sylan
 |-  ( ( ph /\ x e. NN ) -> ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) )
36 35 ralrimiva
 |-  ( ph -> A. x e. NN ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) )
37 ss2iun
 |-  ( A. x e. NN ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) -> U_ x e. NN ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( [,] o. F ) ` x ) )
38 36 37 syl
 |-  ( ph -> U_ x e. NN ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( [,] o. F ) ` x ) )
39 ioof
 |-  (,) : ( RR* X. RR* ) --> ~P RR
40 ffn
 |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) )
41 39 40 ax-mp
 |-  (,) Fn ( RR* X. RR* )
42 inss2
 |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR )
43 rexpssxrxp
 |-  ( RR X. RR ) C_ ( RR* X. RR* )
44 42 43 sstri
 |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* )
45 fss
 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) )
46 1 44 45 sylancl
 |-  ( ph -> F : NN --> ( RR* X. RR* ) )
47 fnfco
 |-  ( ( (,) Fn ( RR* X. RR* ) /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) Fn NN )
48 41 46 47 sylancr
 |-  ( ph -> ( (,) o. F ) Fn NN )
49 fniunfv
 |-  ( ( (,) o. F ) Fn NN -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) )
50 48 49 syl
 |-  ( ph -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) )
51 iccf
 |-  [,] : ( RR* X. RR* ) --> ~P RR*
52 ffn
 |-  ( [,] : ( RR* X. RR* ) --> ~P RR* -> [,] Fn ( RR* X. RR* ) )
53 51 52 ax-mp
 |-  [,] Fn ( RR* X. RR* )
54 fnfco
 |-  ( ( [,] Fn ( RR* X. RR* ) /\ F : NN --> ( RR* X. RR* ) ) -> ( [,] o. F ) Fn NN )
55 53 46 54 sylancr
 |-  ( ph -> ( [,] o. F ) Fn NN )
56 fniunfv
 |-  ( ( [,] o. F ) Fn NN -> U_ x e. NN ( ( [,] o. F ) ` x ) = U. ran ( [,] o. F ) )
57 55 56 syl
 |-  ( ph -> U_ x e. NN ( ( [,] o. F ) ` x ) = U. ran ( [,] o. F ) )
58 38 50 57 3sstr3d
 |-  ( ph -> U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) )
59 ovolss
 |-  ( ( U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) /\ U. ran ( [,] o. F ) C_ RR ) -> ( vol* ` U. ran ( (,) o. F ) ) <_ ( vol* ` U. ran ( [,] o. F ) ) )
60 58 5 59 syl2anc
 |-  ( ph -> ( vol* ` U. ran ( (,) o. F ) ) <_ ( vol* ` U. ran ( [,] o. F ) ) )
61 19 60 eqbrtrrd
 |-  ( ph -> sup ( ran S , RR* , < ) <_ ( vol* ` U. ran ( [,] o. F ) ) )
62 7 15 18 61 xrletrid
 |-  ( ph -> ( vol* ` U. ran ( [,] o. F ) ) = sup ( ran S , RR* , < ) )