| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniioombl.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 2 |
|
uniioombl.2 |
⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
|
uniioombl.3 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 4 |
|
ovolficcss |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| 6 |
|
ovolcl |
⊢ ( ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ∈ ℝ* ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ∈ ℝ* ) |
| 8 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) |
| 9 |
8 3
|
ovolsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 11 |
10
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 12 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 13 |
11 12
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 14 |
|
supxrcl |
⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 16 |
|
ssid |
⊢ ∪ ran ( [,] ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) |
| 17 |
3
|
ovollb2 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( [,] ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 18 |
1 16 17
|
sylancl |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 19 |
1 2 3
|
uniioovol |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 20 |
|
ioossicc |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ⊆ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 21 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
| 22 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
| 23 |
20 21 22
|
3sstr3i |
⊢ ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ⊆ ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
| 24 |
23
|
a1i |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ⊆ ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ) |
| 25 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 26 |
25
|
elin2d |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) ) |
| 27 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑥 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
| 28 |
26 27
|
syl |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
| 29 |
28
|
fveq2d |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ) |
| 30 |
28
|
fveq2d |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑥 ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ) |
| 31 |
24 29 30
|
3sstr4d |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( [,] ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 32 |
|
fvco3 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 |
|
fvco3 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) = ( [,] ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 |
31 32 33
|
3sstr4d |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 35 |
1 34
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 36 |
35
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 37 |
|
ss2iun |
⊢ ( ∀ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ ℕ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 38 |
36 37
|
syl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ ℕ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 39 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 40 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 41 |
39 40
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 42 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
| 43 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 44 |
42 43
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 45 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 46 |
1 44 45
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 47 |
|
fnfco |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) Fn ℕ ) |
| 48 |
41 46 47
|
sylancr |
⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) Fn ℕ ) |
| 49 |
|
fniunfv |
⊢ ( ( (,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 50 |
48 49
|
syl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 51 |
|
iccf |
⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 52 |
|
ffn |
⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,] Fn ( ℝ* × ℝ* ) ) |
| 53 |
51 52
|
ax-mp |
⊢ [,] Fn ( ℝ* × ℝ* ) |
| 54 |
|
fnfco |
⊢ ( ( [,] Fn ( ℝ* × ℝ* ) ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( [,] ∘ 𝐹 ) Fn ℕ ) |
| 55 |
53 46 54
|
sylancr |
⊢ ( 𝜑 → ( [,] ∘ 𝐹 ) Fn ℕ ) |
| 56 |
|
fniunfv |
⊢ ( ( [,] ∘ 𝐹 ) Fn ℕ → ∪ 𝑥 ∈ ℕ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( [,] ∘ 𝐹 ) ) |
| 57 |
55 56
|
syl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ℕ ( ( [,] ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( [,] ∘ 𝐹 ) ) |
| 58 |
38 50 57
|
3sstr3d |
⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) |
| 59 |
|
ovolss |
⊢ ( ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ∧ ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ≤ ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ) |
| 60 |
58 5 59
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ≤ ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ) |
| 61 |
19 60
|
eqbrtrrd |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) ) |
| 62 |
7 15 18 61
|
xrletrid |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( [,] ∘ 𝐹 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |