Metamath Proof Explorer


Theorem xaddnepnf

Description: Closure of extended real addition in the subset RR* / { +oo } . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddnepnf
|- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo )

Proof

Step Hyp Ref Expression
1 xrnepnf
 |-  ( ( A e. RR* /\ A =/= +oo ) <-> ( A e. RR \/ A = -oo ) )
2 xrnepnf
 |-  ( ( B e. RR* /\ B =/= +oo ) <-> ( B e. RR \/ B = -oo ) )
3 rexadd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) )
4 readdcl
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR )
5 3 4 eqeltrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A +e B ) e. RR )
6 5 renepnfd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A +e B ) =/= +oo )
7 oveq2
 |-  ( B = -oo -> ( A +e B ) = ( A +e -oo ) )
8 rexr
 |-  ( A e. RR -> A e. RR* )
9 renepnf
 |-  ( A e. RR -> A =/= +oo )
10 xaddmnf1
 |-  ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo )
11 8 9 10 syl2anc
 |-  ( A e. RR -> ( A +e -oo ) = -oo )
12 7 11 sylan9eqr
 |-  ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = -oo )
13 mnfnepnf
 |-  -oo =/= +oo
14 13 a1i
 |-  ( ( A e. RR /\ B = -oo ) -> -oo =/= +oo )
15 12 14 eqnetrd
 |-  ( ( A e. RR /\ B = -oo ) -> ( A +e B ) =/= +oo )
16 6 15 jaodan
 |-  ( ( A e. RR /\ ( B e. RR \/ B = -oo ) ) -> ( A +e B ) =/= +oo )
17 2 16 sylan2b
 |-  ( ( A e. RR /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo )
18 oveq1
 |-  ( A = -oo -> ( A +e B ) = ( -oo +e B ) )
19 xaddmnf2
 |-  ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo )
20 18 19 sylan9eq
 |-  ( ( A = -oo /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) = -oo )
21 13 a1i
 |-  ( ( A = -oo /\ ( B e. RR* /\ B =/= +oo ) ) -> -oo =/= +oo )
22 20 21 eqnetrd
 |-  ( ( A = -oo /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo )
23 17 22 jaoian
 |-  ( ( ( A e. RR \/ A = -oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo )
24 1 23 sylanb
 |-  ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo )