| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrsxmet.1 |  |-  D = ( dist ` RR*s ) | 
						
							| 2 |  | rexr |  |-  ( P e. RR -> P e. RR* ) | 
						
							| 3 | 1 | xrsxmet |  |-  D e. ( *Met ` RR* ) | 
						
							| 4 |  | eqid |  |-  ( `' D " RR ) = ( `' D " RR ) | 
						
							| 5 | 4 | blssec |  |-  ( ( D e. ( *Met ` RR* ) /\ P e. RR* /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) | 
						
							| 6 | 3 5 | mp3an1 |  |-  ( ( P e. RR* /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) | 
						
							| 7 | 2 6 | sylan |  |-  ( ( P e. RR /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) | 
						
							| 8 |  | vex |  |-  x e. _V | 
						
							| 9 |  | simpl |  |-  ( ( P e. RR /\ R e. RR* ) -> P e. RR ) | 
						
							| 10 |  | elecg |  |-  ( ( x e. _V /\ P e. RR ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) | 
						
							| 11 | 8 9 10 | sylancr |  |-  ( ( P e. RR /\ R e. RR* ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) | 
						
							| 12 | 4 | xmeterval |  |-  ( D e. ( *Met ` RR* ) -> ( P ( `' D " RR ) x <-> ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) ) | 
						
							| 13 | 3 12 | ax-mp |  |-  ( P ( `' D " RR ) x <-> ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) | 
						
							| 14 |  | simpr |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P = x ) -> P = x ) | 
						
							| 15 |  | simplll |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P = x ) -> P e. RR ) | 
						
							| 16 | 14 15 | eqeltrrd |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P = x ) -> x e. RR ) | 
						
							| 17 |  | simplr3 |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> ( P D x ) e. RR ) | 
						
							| 18 |  | simplr1 |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> P e. RR* ) | 
						
							| 19 |  | simplr2 |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> x e. RR* ) | 
						
							| 20 |  | simpr |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> P =/= x ) | 
						
							| 21 | 1 | xrsdsreclb |  |-  ( ( P e. RR* /\ x e. RR* /\ P =/= x ) -> ( ( P D x ) e. RR <-> ( P e. RR /\ x e. RR ) ) ) | 
						
							| 22 | 18 19 20 21 | syl3anc |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> ( ( P D x ) e. RR <-> ( P e. RR /\ x e. RR ) ) ) | 
						
							| 23 | 17 22 | mpbid |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> ( P e. RR /\ x e. RR ) ) | 
						
							| 24 | 23 | simprd |  |-  ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> x e. RR ) | 
						
							| 25 | 16 24 | pm2.61dane |  |-  ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) -> x e. RR ) | 
						
							| 26 | 25 | ex |  |-  ( ( P e. RR /\ R e. RR* ) -> ( ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) -> x e. RR ) ) | 
						
							| 27 | 13 26 | biimtrid |  |-  ( ( P e. RR /\ R e. RR* ) -> ( P ( `' D " RR ) x -> x e. RR ) ) | 
						
							| 28 | 11 27 | sylbid |  |-  ( ( P e. RR /\ R e. RR* ) -> ( x e. [ P ] ( `' D " RR ) -> x e. RR ) ) | 
						
							| 29 | 28 | ssrdv |  |-  ( ( P e. RR /\ R e. RR* ) -> [ P ] ( `' D " RR ) C_ RR ) | 
						
							| 30 | 7 29 | sstrd |  |-  ( ( P e. RR /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ RR ) |