| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sno |
|- 2s e. No |
| 2 |
|
exps0 |
|- ( 2s e. No -> ( 2s ^su 0s ) = 1s ) |
| 3 |
1 2
|
ax-mp |
|- ( 2s ^su 0s ) = 1s |
| 4 |
3
|
oveq2i |
|- ( A /su ( 2s ^su 0s ) ) = ( A /su 1s ) |
| 5 |
|
zno |
|- ( A e. ZZ_s -> A e. No ) |
| 6 |
|
divs1 |
|- ( A e. No -> ( A /su 1s ) = A ) |
| 7 |
5 6
|
syl |
|- ( A e. ZZ_s -> ( A /su 1s ) = A ) |
| 8 |
4 7
|
eqtr2id |
|- ( A e. ZZ_s -> A = ( A /su ( 2s ^su 0s ) ) ) |
| 9 |
|
0n0s |
|- 0s e. NN0_s |
| 10 |
|
oveq1 |
|- ( x = A -> ( x /su ( 2s ^su y ) ) = ( A /su ( 2s ^su y ) ) ) |
| 11 |
10
|
eqeq2d |
|- ( x = A -> ( A = ( x /su ( 2s ^su y ) ) <-> A = ( A /su ( 2s ^su y ) ) ) ) |
| 12 |
|
oveq2 |
|- ( y = 0s -> ( 2s ^su y ) = ( 2s ^su 0s ) ) |
| 13 |
12
|
oveq2d |
|- ( y = 0s -> ( A /su ( 2s ^su y ) ) = ( A /su ( 2s ^su 0s ) ) ) |
| 14 |
13
|
eqeq2d |
|- ( y = 0s -> ( A = ( A /su ( 2s ^su y ) ) <-> A = ( A /su ( 2s ^su 0s ) ) ) ) |
| 15 |
11 14
|
rspc2ev |
|- ( ( A e. ZZ_s /\ 0s e. NN0_s /\ A = ( A /su ( 2s ^su 0s ) ) ) -> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) |
| 16 |
9 15
|
mp3an2 |
|- ( ( A e. ZZ_s /\ A = ( A /su ( 2s ^su 0s ) ) ) -> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) |
| 17 |
8 16
|
mpdan |
|- ( A e. ZZ_s -> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) |
| 18 |
|
elzs12 |
|- ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) |
| 19 |
17 18
|
sylibr |
|- ( A e. ZZ_s -> A e. ZZ_s[1/2] ) |