Metamath Proof Explorer


Theorem 01eq0ringOLD

Description: Obsolete version of 01eq0ring as of 23-Feb-2025. (Contributed by AV, 16-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses 0ring.b B=BaseR
0ring.0 0˙=0R
0ring01eq.1 1˙=1R
Assertion 01eq0ringOLD RRing0˙=1˙B=0˙

Proof

Step Hyp Ref Expression
1 0ring.b B=BaseR
2 0ring.0 0˙=0R
3 0ring01eq.1 1˙=1R
4 1 fvexi BV
5 hashv01gt1 BVB=0B=11<B
6 4 5 ax-mp B=0B=11<B
7 hasheq0 BVB=0B=
8 4 7 ax-mp B=0B=
9 ne0i 0˙BB
10 eqneqall B=BB10˙1˙
11 9 10 syl5com 0˙BB=B10˙1˙
12 8 11 biimtrid 0˙BB=0B10˙1˙
13 1 2 ring0cl RRing0˙B
14 12 13 syl11 B=0RRingB10˙1˙
15 eqneqall B=1B10˙1˙
16 15 a1d B=1RRingB10˙1˙
17 1 3 2 ring1ne0 RRing1<B1˙0˙
18 17 necomd RRing1<B0˙1˙
19 18 ex RRing1<B0˙1˙
20 19 a1i B1RRing1<B0˙1˙
21 20 com13 1<BRRingB10˙1˙
22 14 16 21 3jaoi B=0B=11<BRRingB10˙1˙
23 6 22 ax-mp RRingB10˙1˙
24 23 necon4d RRing0˙=1˙B=1
25 24 imp RRing0˙=1˙B=1
26 1 2 0ring RRingB=1B=0˙
27 25 26 syldan RRing0˙=1˙B=0˙