Metamath Proof Explorer


Theorem 0dig2nn0e

Description: The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010)

Ref Expression
Assertion 0dig2nn0e N0N200digit2N=0

Proof

Step Hyp Ref Expression
1 2nn 2
2 1 a1i N0N202
3 0nn0 00
4 3 a1i N0N2000
5 nn0rp0 N0N0+∞
6 5 adantr N0N20N0+∞
7 nn0digval 200N0+∞0digit2N=N20mod2
8 2 4 6 7 syl3anc N0N200digit2N=N20mod2
9 2cn 2
10 exp0 220=1
11 9 10 mp1i N0N2020=1
12 11 oveq2d N0N20N20=N1
13 nn0cn N0N
14 13 div1d N0N1=N
15 14 adantr N0N20N1=N
16 12 15 eqtrd N0N20N20=N
17 16 fveq2d N0N20N20=N
18 17 oveq1d N0N20N20mod2=Nmod2
19 nn0z N0N
20 flid NN=N
21 19 20 syl N0N=N
22 21 adantr N0N20N=N
23 22 oveq1d N0N20Nmod2=Nmod2
24 nn0z N20N2
25 24 adantl N0N20N2
26 nn0re N0N
27 26 adantr N0N20N
28 2rp 2+
29 mod0 N2+Nmod2=0N2
30 27 28 29 sylancl N0N20Nmod2=0N2
31 25 30 mpbird N0N20Nmod2=0
32 23 31 eqtrd N0N20Nmod2=0
33 18 32 eqtrd N0N20N20mod2=0
34 8 33 eqtrd N0N200digit2N=0