Metamath Proof Explorer


Theorem 0dig2nn0o

Description: The last bit of an odd integer is 1. (Contributed by AV, 3-Jun-2010)

Ref Expression
Assertion 0dig2nn0o N0N+1200digit2N=1

Proof

Step Hyp Ref Expression
1 2nn 2
2 1 a1i N0N+1202
3 0nn0 00
4 3 a1i N0N+12000
5 nn0rp0 N0N0+∞
6 5 adantr N0N+120N0+∞
7 nn0digval 200N0+∞0digit2N=N20mod2
8 2 4 6 7 syl3anc N0N+1200digit2N=N20mod2
9 2cn 2
10 exp0 220=1
11 9 10 mp1i N0N+12020=1
12 11 oveq2d N0N+120N20=N1
13 nn0cn N0N
14 13 div1d N0N1=N
15 14 adantr N0N+120N1=N
16 12 15 eqtrd N0N+120N20=N
17 16 fveq2d N0N+120N20=N
18 17 oveq1d N0N+120N20mod2=Nmod2
19 nn0z N0N
20 flid NN=N
21 19 20 syl N0N=N
22 21 oveq1d N0Nmod2=Nmod2
23 22 adantr N0N+120Nmod2=Nmod2
24 nn0z N+120N+12
25 24 adantl N0N+120N+12
26 2z 2
27 26 a1i N0N+1202
28 2ne0 20
29 28 a1i N0N+12020
30 peano2nn0 N0N+10
31 30 nn0zd N0N+1
32 31 adantr N0N+120N+1
33 dvdsval2 220N+12N+1N+12
34 27 29 32 33 syl3anc N0N+1202N+1N+12
35 25 34 mpbird N0N+1202N+1
36 oddp1even N¬2N2N+1
37 19 36 syl N0¬2N2N+1
38 37 adantr N0N+120¬2N2N+1
39 35 38 mpbird N0N+120¬2N
40 19 adantr N0N+120N
41 mod2eq1n2dvds NNmod2=1¬2N
42 40 41 syl N0N+120Nmod2=1¬2N
43 39 42 mpbird N0N+120Nmod2=1
44 23 43 eqtrd N0N+120Nmod2=1
45 18 44 eqtrd N0N+120N20mod2=1
46 8 45 eqtrd N0N+1200digit2N=1