Metamath Proof Explorer


Theorem 0elsiga

Description: A sigma-algebra contains the empty set. (Contributed by Thierry Arnoux, 4-Sep-2016)

Ref Expression
Assertion 0elsiga S ran sigAlgebra S

Proof

Step Hyp Ref Expression
1 isrnsiga S ran sigAlgebra S V o S 𝒫 o o S x S o x S x 𝒫 S x ω x S
2 1 simprbi S ran sigAlgebra o S 𝒫 o o S x S o x S x 𝒫 S x ω x S
3 3simpa o S x S o x S x 𝒫 S x ω x S o S x S o x S
4 3 adantl S 𝒫 o o S x S o x S x 𝒫 S x ω x S o S x S o x S
5 4 eximi o S 𝒫 o o S x S o x S x 𝒫 S x ω x S o o S x S o x S
6 difeq2 x = o o x = o o
7 difid o o =
8 6 7 eqtrdi x = o o x =
9 8 eleq1d x = o o x S S
10 9 rspcva o S x S o x S S
11 10 exlimiv o o S x S o x S S
12 2 5 11 3syl S ran sigAlgebra S