Metamath Proof Explorer


Theorem 0pledm

Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses 0pledm.1 φA
0pledm.2 φFFnA
Assertion 0pledm φ0𝑝fFA×0fF

Proof

Step Hyp Ref Expression
1 0pledm.1 φA
2 0pledm.2 φFFnA
3 sseqin2 AA=A
4 1 3 sylib φA=A
5 4 raleqdv φxA0FxxA0Fx
6 0cn 0
7 fnconstg 0×0Fn
8 6 7 ax-mp ×0Fn
9 df-0p 0𝑝=×0
10 9 fneq1i 0𝑝Fn×0Fn
11 8 10 mpbir 0𝑝Fn
12 11 a1i φ0𝑝Fn
13 cnex V
14 13 a1i φV
15 ssexg AVAV
16 1 13 15 sylancl φAV
17 eqid A=A
18 0pval x0𝑝x=0
19 18 adantl φx0𝑝x=0
20 eqidd φxAFx=Fx
21 12 2 14 16 17 19 20 ofrfval φ0𝑝fFxA0Fx
22 fnconstg 0A×0FnA
23 6 22 ax-mp A×0FnA
24 23 a1i φA×0FnA
25 inidm AA=A
26 c0ex 0V
27 26 fvconst2 xAA×0x=0
28 27 adantl φxAA×0x=0
29 24 2 16 16 25 28 20 ofrfval φA×0fFxA0Fx
30 5 21 29 3bitr4d φ0𝑝fFA×0fF