Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0pledm.1 | |
|
0pledm.2 | |
||
Assertion | 0pledm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pledm.1 | |
|
2 | 0pledm.2 | |
|
3 | sseqin2 | |
|
4 | 1 3 | sylib | |
5 | 4 | raleqdv | |
6 | 0cn | |
|
7 | fnconstg | |
|
8 | 6 7 | ax-mp | |
9 | df-0p | |
|
10 | 9 | fneq1i | |
11 | 8 10 | mpbir | |
12 | 11 | a1i | |
13 | cnex | |
|
14 | 13 | a1i | |
15 | ssexg | |
|
16 | 1 13 15 | sylancl | |
17 | eqid | |
|
18 | 0pval | |
|
19 | 18 | adantl | |
20 | eqidd | |
|
21 | 12 2 14 16 17 19 20 | ofrfval | |
22 | fnconstg | |
|
23 | 6 22 | ax-mp | |
24 | 23 | a1i | |
25 | inidm | |
|
26 | c0ex | |
|
27 | 26 | fvconst2 | |
28 | 27 | adantl | |
29 | 24 2 16 16 25 28 20 | ofrfval | |
30 | 5 21 29 | 3bitr4d | |