Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014) (Proof shortened by SN, 31-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 0subg.z | |
|
Assertion | 0subg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0subg.z | |
|
2 | grpmnd | |
|
3 | 1 | 0subm | |
4 | 2 3 | syl | |
5 | eqid | |
|
6 | 1 5 | grpinvid | |
7 | fvex | |
|
8 | 7 | elsn | |
9 | 6 8 | sylibr | |
10 | 1 | fvexi | |
11 | fveq2 | |
|
12 | 11 | eleq1d | |
13 | 10 12 | ralsn | |
14 | 9 13 | sylibr | |
15 | 5 | issubg3 | |
16 | 4 14 15 | mpbir2and | |