Metamath Proof Explorer


Theorem 0subg

Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014) (Proof shortened by SN, 31-Jan-2025)

Ref Expression
Hypothesis 0subg.z 0˙=0G
Assertion 0subg GGrp0˙SubGrpG

Proof

Step Hyp Ref Expression
1 0subg.z 0˙=0G
2 grpmnd GGrpGMnd
3 1 0subm GMnd0˙SubMndG
4 2 3 syl GGrp0˙SubMndG
5 eqid invgG=invgG
6 1 5 grpinvid GGrpinvgG0˙=0˙
7 fvex invgG0˙V
8 7 elsn invgG0˙0˙invgG0˙=0˙
9 6 8 sylibr GGrpinvgG0˙0˙
10 1 fvexi 0˙V
11 fveq2 a=0˙invgGa=invgG0˙
12 11 eleq1d a=0˙invgGa0˙invgG0˙0˙
13 10 12 ralsn a0˙invgGa0˙invgG0˙0˙
14 9 13 sylibr GGrpa0˙invgGa0˙
15 5 issubg3 GGrp0˙SubGrpG0˙SubMndGa0˙invgGa0˙
16 4 14 15 mpbir2and GGrp0˙SubGrpG