Metamath Proof Explorer


Theorem 1259lem5

Description: Lemma for 1259prm . Calculate the GCD of 2 ^ 3 4 - 1 == 8 6 9 with N = 1 2 5 9 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis 1259prm.1 N=1259
Assertion 1259lem5 2341gcdN=1

Proof

Step Hyp Ref Expression
1 1259prm.1 N=1259
2 2nn 2
3 3nn0 30
4 4nn0 40
5 3 4 deccl 340
6 nnexpcl 2340234
7 2 5 6 mp2an 234
8 nnm1nn0 23423410
9 7 8 ax-mp 23410
10 8nn0 80
11 6nn0 60
12 10 11 deccl 860
13 9nn0 90
14 12 13 deccl 8690
15 1nn0 10
16 2nn0 20
17 15 16 deccl 120
18 5nn0 50
19 17 18 deccl 1250
20 9nn 9
21 19 20 decnncl 1259
22 1 21 eqeltri N
23 1 1259lem2 234modN=870modN
24 6p1e7 6+1=7
25 eqid 86=86
26 10 11 24 25 decsuc 86+1=87
27 eqid 869=869
28 12 26 27 decsucc 869+1=870
29 22 7 15 14 23 28 modsubi 2341modN=869modN
30 3 13 deccl 390
31 0nn0 00
32 30 31 deccl 3900
33 10 13 deccl 890
34 16 15 deccl 210
35 15 3 deccl 130
36 34 nn0zi 21
37 35 nn0zi 13
38 gcdcom 211321gcd13=13gcd21
39 36 37 38 mp2an 21gcd13=13gcd21
40 3nn 3
41 15 40 decnncl 13
42 8nn 8
43 eqid 13=13
44 10 dec0h 8=08
45 ax-1cn 1
46 45 mulridi 11=1
47 45 addlidi 0+1=1
48 46 47 oveq12i 11+0+1=1+1
49 1p1e2 1+1=2
50 48 49 eqtri 11+0+1=2
51 3cn 3
52 51 mulridi 31=3
53 52 oveq1i 31+8=3+8
54 8cn 8
55 8p3e11 8+3=11
56 54 51 55 addcomli 3+8=11
57 53 56 eqtri 31+8=11
58 15 3 31 10 43 44 15 15 15 50 57 decmac 131+8=21
59 1nn 1
60 8lt10 8<10
61 59 3 10 60 declti 8<13
62 41 15 42 58 61 ndvdsi ¬1321
63 13prm 13
64 coprm 1321¬132113gcd21=1
65 63 36 64 mp2an ¬132113gcd21=1
66 62 65 mpbi 13gcd21=1
67 39 66 eqtri 21gcd13=1
68 eqid 21=21
69 2cn 2
70 69 mullidi 12=2
71 45 addridi 1+0=1
72 70 71 oveq12i 12+1+0=2+1
73 2p1e3 2+1=3
74 72 73 eqtri 12+1+0=3
75 46 oveq1i 11+3=1+3
76 3p1e4 3+1=4
77 51 45 76 addcomli 1+3=4
78 4 dec0h 4=04
79 75 77 78 3eqtri 11+3=04
80 16 15 15 3 68 43 15 4 31 74 79 decma2c 121+13=34
81 15 35 34 67 80 gcdi 34gcd21=1
82 eqid 34=34
83 3t2e6 32=6
84 51 69 83 mulcomli 23=6
85 69 addridi 2+0=2
86 84 85 oveq12i 23+2+0=6+2
87 6p2e8 6+2=8
88 86 87 eqtri 23+2+0=8
89 4cn 4
90 4t2e8 42=8
91 89 69 90 mulcomli 24=8
92 91 oveq1i 24+1=8+1
93 8p1e9 8+1=9
94 13 dec0h 9=09
95 92 93 94 3eqtri 24+1=09
96 3 4 16 15 82 68 16 13 31 88 95 decma2c 234+21=89
97 16 34 5 81 96 gcdi 89gcd34=1
98 eqid 89=89
99 4p3e7 4+3=7
100 89 51 99 addcomli 3+4=7
101 100 oveq2i 48+3+4=48+7
102 7nn0 70
103 8t4e32 84=32
104 54 89 103 mulcomli 48=32
105 7cn 7
106 7p2e9 7+2=9
107 105 69 106 addcomli 2+7=9
108 3 16 102 104 107 decaddi 48+7=39
109 101 108 eqtri 48+3+4=39
110 9cn 9
111 9t4e36 94=36
112 110 89 111 mulcomli 49=36
113 6p4e10 6+4=10
114 3 11 4 112 76 113 decaddci2 49+4=40
115 10 13 3 4 98 82 4 31 4 109 114 decma2c 489+34=390
116 4 5 33 97 115 gcdi 390gcd89=1
117 eqid 390=390
118 eqid 39=39
119 54 addridi 8+0=8
120 119 44 eqtri 8+0=08
121 69 addlidi 0+2=2
122 84 121 oveq12i 23+0+2=6+2
123 122 87 eqtri 23+0+2=8
124 9t2e18 92=18
125 110 69 124 mulcomli 29=18
126 8p8e16 8+8=16
127 15 10 10 125 49 11 126 decaddci 29+8=26
128 3 13 31 10 118 120 16 11 16 123 127 decma2c 239+8+0=86
129 2t0e0 20=0
130 129 oveq1i 20+9=0+9
131 110 addlidi 0+9=9
132 130 131 94 3eqtri 20+9=09
133 30 31 10 13 117 98 16 13 31 128 132 decma2c 2390+89=869
134 16 33 32 116 133 gcdi 869gcd390=1
135 30 nn0cni 39
136 135 addridi 39+0=39
137 54 mullidi 18=8
138 137 76 oveq12i 18+3+1=8+4
139 8p4e12 8+4=12
140 138 139 eqtri 18+3+1=12
141 6cn 6
142 141 mullidi 16=6
143 142 oveq1i 16+9=6+9
144 9p6e15 9+6=15
145 110 141 144 addcomli 6+9=15
146 143 145 eqtri 16+9=15
147 10 11 3 13 25 136 15 18 15 140 146 decma2c 186+39+0=125
148 110 mullidi 19=9
149 148 oveq1i 19+0=9+0
150 110 addridi 9+0=9
151 149 150 94 3eqtri 19+0=09
152 12 13 30 31 27 117 15 13 31 147 151 decma2c 1869+390=1259
153 152 1 eqtr4i 1869+390=N
154 15 32 14 134 153 gcdi Ngcd869=1
155 9 14 22 29 154 gcdmodi 2341gcdN=1