Step |
Hyp |
Ref |
Expression |
1 |
|
1cvratex.b |
|
2 |
|
1cvratex.s |
|
3 |
|
1cvratex.u |
|
4 |
|
1cvratex.c |
|
5 |
|
1cvratex.a |
|
6 |
|
simp1 |
|
7 |
|
eqid |
|
8 |
1 3 7 4 5
|
1cvrco |
|
9 |
8
|
biimp3a |
|
10 |
|
eqid |
|
11 |
10 4 5
|
2dim |
|
12 |
6 9 11
|
syl2anc |
|
13 |
|
simp11 |
|
14 |
|
hlop |
|
15 |
13 14
|
syl |
|
16 |
13
|
hllatd |
|
17 |
|
simp12 |
|
18 |
1 7
|
opoccl |
|
19 |
15 17 18
|
syl2anc |
|
20 |
|
simp2l |
|
21 |
1 5
|
atbase |
|
22 |
20 21
|
syl |
|
23 |
1 10
|
latjcl |
|
24 |
16 19 22 23
|
syl3anc |
|
25 |
1 7
|
opoccl |
|
26 |
15 24 25
|
syl2anc |
|
27 |
|
simp2r |
|
28 |
1 5
|
atbase |
|
29 |
27 28
|
syl |
|
30 |
1 10
|
latjcl |
|
31 |
16 24 29 30
|
syl3anc |
|
32 |
1 7
|
opoccl |
|
33 |
15 31 32
|
syl2anc |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
1 34 35
|
op0le |
|
37 |
15 33 36
|
syl2anc |
|
38 |
|
simp3r |
|
39 |
1 2 4
|
cvrlt |
|
40 |
13 24 31 38 39
|
syl31anc |
|
41 |
1 2 7
|
opltcon3b |
|
42 |
15 24 31 41
|
syl3anc |
|
43 |
40 42
|
mpbid |
|
44 |
|
hlpos |
|
45 |
13 44
|
syl |
|
46 |
1 35
|
op0cl |
|
47 |
15 46
|
syl |
|
48 |
1 34 2
|
plelttr |
|
49 |
45 47 33 26 48
|
syl13anc |
|
50 |
37 43 49
|
mp2and |
|
51 |
2
|
pltne |
|
52 |
13 47 26 51
|
syl3anc |
|
53 |
50 52
|
mpd |
|
54 |
53
|
necomd |
|
55 |
1 34 35 5
|
atle |
|
56 |
13 26 54 55
|
syl3anc |
|
57 |
|
simp3l |
|
58 |
1 2 4
|
cvrlt |
|
59 |
13 19 24 57 58
|
syl31anc |
|
60 |
1 2 7
|
opltcon3b |
|
61 |
15 19 24 60
|
syl3anc |
|
62 |
59 61
|
mpbid |
|
63 |
1 7
|
opococ |
|
64 |
15 17 63
|
syl2anc |
|
65 |
62 64
|
breqtrd |
|
66 |
65
|
adantr |
|
67 |
|
simpl11 |
|
68 |
67 44
|
syl |
|
69 |
1 5
|
atbase |
|
70 |
69
|
adantl |
|
71 |
26
|
adantr |
|
72 |
|
simpl12 |
|
73 |
1 34 2
|
plelttr |
|
74 |
68 70 71 72 73
|
syl13anc |
|
75 |
66 74
|
mpan2d |
|
76 |
75
|
reximdva |
|
77 |
56 76
|
mpd |
|
78 |
77
|
3exp |
|
79 |
78
|
rexlimdvv |
|
80 |
12 79
|
mpd |
|