Metamath Proof Explorer


Theorem 1hegrlfgr

Description: A graph G with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021)

Ref Expression
Hypotheses 1hegrlfgr.a φAX
1hegrlfgr.b φBV
1hegrlfgr.c φCV
1hegrlfgr.n φBC
1hegrlfgr.x φE𝒫V
1hegrlfgr.i φiEdgG=AE
1hegrlfgr.e φBCE
Assertion 1hegrlfgr φiEdgG:Ax𝒫V|2x

Proof

Step Hyp Ref Expression
1 1hegrlfgr.a φAX
2 1hegrlfgr.b φBV
3 1hegrlfgr.c φCV
4 1hegrlfgr.n φBC
5 1hegrlfgr.x φE𝒫V
6 1hegrlfgr.i φiEdgG=AE
7 1hegrlfgr.e φBCE
8 f1osng AXE𝒫VAE:A1-1 ontoE
9 1 5 8 syl2anc φAE:A1-1 ontoE
10 f1of AE:A1-1 ontoEAE:AE
11 9 10 syl φAE:AE
12 prid1g BVBBC
13 2 12 syl φBBC
14 7 13 sseldd φBE
15 prid2g CVCBC
16 3 15 syl φCBC
17 7 16 sseldd φCE
18 5 14 17 4 nehash2 φ2E
19 fveq2 x=Ex=E
20 19 breq2d x=E2x2E
21 20 elrab Ex𝒫V|2xE𝒫V2E
22 5 18 21 sylanbrc φEx𝒫V|2x
23 22 snssd φEx𝒫V|2x
24 11 23 fssd φAE:Ax𝒫V|2x
25 6 feq1d φiEdgG:Ax𝒫V|2xAE:Ax𝒫V|2x
26 24 25 mpbird φiEdgG:Ax𝒫V|2x