Metamath Proof Explorer


Theorem 1hegrlfgr

Description: A graph G with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021)

Ref Expression
Hypotheses 1hegrlfgr.a φ A X
1hegrlfgr.b φ B V
1hegrlfgr.c φ C V
1hegrlfgr.n φ B C
1hegrlfgr.x φ E 𝒫 V
1hegrlfgr.i φ iEdg G = A E
1hegrlfgr.e φ B C E
Assertion 1hegrlfgr φ iEdg G : A x 𝒫 V | 2 x

Proof

Step Hyp Ref Expression
1 1hegrlfgr.a φ A X
2 1hegrlfgr.b φ B V
3 1hegrlfgr.c φ C V
4 1hegrlfgr.n φ B C
5 1hegrlfgr.x φ E 𝒫 V
6 1hegrlfgr.i φ iEdg G = A E
7 1hegrlfgr.e φ B C E
8 f1osng A X E 𝒫 V A E : A 1-1 onto E
9 1 5 8 syl2anc φ A E : A 1-1 onto E
10 f1of A E : A 1-1 onto E A E : A E
11 9 10 syl φ A E : A E
12 prid1g B V B B C
13 2 12 syl φ B B C
14 7 13 sseldd φ B E
15 prid2g C V C B C
16 3 15 syl φ C B C
17 7 16 sseldd φ C E
18 5 14 17 4 nehash2 φ 2 E
19 fveq2 x = E x = E
20 19 breq2d x = E 2 x 2 E
21 20 elrab E x 𝒫 V | 2 x E 𝒫 V 2 E
22 5 18 21 sylanbrc φ E x 𝒫 V | 2 x
23 22 snssd φ E x 𝒫 V | 2 x
24 11 23 fssd φ A E : A x 𝒫 V | 2 x
25 6 feq1d φ iEdg G : A x 𝒫 V | 2 x A E : A x 𝒫 V | 2 x
26 24 25 mpbird φ iEdg G : A x 𝒫 V | 2 x