Description: A graph G with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1hegrlfgr.a | |
|
1hegrlfgr.b | |
||
1hegrlfgr.c | |
||
1hegrlfgr.n | |
||
1hegrlfgr.x | |
||
1hegrlfgr.i | |
||
1hegrlfgr.e | |
||
Assertion | 1hegrlfgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1hegrlfgr.a | |
|
2 | 1hegrlfgr.b | |
|
3 | 1hegrlfgr.c | |
|
4 | 1hegrlfgr.n | |
|
5 | 1hegrlfgr.x | |
|
6 | 1hegrlfgr.i | |
|
7 | 1hegrlfgr.e | |
|
8 | f1osng | |
|
9 | 1 5 8 | syl2anc | |
10 | f1of | |
|
11 | 9 10 | syl | |
12 | prid1g | |
|
13 | 2 12 | syl | |
14 | 7 13 | sseldd | |
15 | prid2g | |
|
16 | 3 15 | syl | |
17 | 7 16 | sseldd | |
18 | 5 14 17 4 | nehash2 | |
19 | fveq2 | |
|
20 | 19 | breq2d | |
21 | 20 | elrab | |
22 | 5 18 21 | sylanbrc | |
23 | 22 | snssd | |
24 | 11 23 | fssd | |
25 | 6 | feq1d | |
26 | 24 25 | mpbird | |