| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1hevtxdg0.i |
|
| 2 |
|
1hevtxdg0.v |
|
| 3 |
|
1hevtxdg0.a |
|
| 4 |
|
1hevtxdg0.d |
|
| 5 |
|
1hevtxdg1.e |
|
| 6 |
|
1hevtxdg1.n |
|
| 7 |
|
1hevtxdg1.l |
|
| 8 |
1
|
dmeqd |
|
| 9 |
|
dmsnopg |
|
| 10 |
5 9
|
syl |
|
| 11 |
8 10
|
eqtrd |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
breq2d |
|
| 14 |
2
|
pweqd |
|
| 15 |
5 14
|
eleqtrrd |
|
| 16 |
13 15 7
|
elrabd |
|
| 17 |
3 16
|
fsnd |
|
| 18 |
17
|
adantr |
|
| 19 |
1
|
adantr |
|
| 20 |
|
simpr |
|
| 21 |
19 20
|
feq12d |
|
| 22 |
18 21
|
mpbird |
|
| 23 |
4 2
|
eleqtrrd |
|
| 24 |
23
|
adantr |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
25 26 27 28
|
vtxdlfgrval |
|
| 30 |
22 24 29
|
syl2anc |
|
| 31 |
|
rabeq |
|
| 32 |
31
|
adantl |
|
| 33 |
32
|
fveq2d |
|
| 34 |
|
fveq2 |
|
| 35 |
34
|
eleq2d |
|
| 36 |
35
|
rabsnif |
|
| 37 |
1
|
fveq1d |
|
| 38 |
|
fvsng |
|
| 39 |
3 5 38
|
syl2anc |
|
| 40 |
37 39
|
eqtrd |
|
| 41 |
6 40
|
eleqtrrd |
|
| 42 |
41
|
iftrued |
|
| 43 |
36 42
|
eqtrid |
|
| 44 |
43
|
fveq2d |
|
| 45 |
|
hashsng |
|
| 46 |
3 45
|
syl |
|
| 47 |
44 46
|
eqtrd |
|
| 48 |
47
|
adantr |
|
| 49 |
30 33 48
|
3eqtrd |
|
| 50 |
11 49
|
mpdan |
|