Metamath Proof Explorer


Theorem 2arymaptf

Description: The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024)

Ref Expression
Hypothesis 2arymaptf.h No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
Assertion 2arymaptf Could not format assertion : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 2arymaptf.h Could not format H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
2 simplr Could not format ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> h e. ( 2 -aryF X ) ) : No typesetting found for |- ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> h e. ( 2 -aryF X ) ) with typecode |-
3 xp1st zX×X1stzX
4 3 adantl Could not format ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( 1st ` z ) e. X ) : No typesetting found for |- ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( 1st ` z ) e. X ) with typecode |-
5 xp2nd zX×X2ndzX
6 5 adantl Could not format ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( 2nd ` z ) e. X ) : No typesetting found for |- ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( 2nd ` z ) e. X ) with typecode |-
7 fv2arycl Could not format ( ( h e. ( 2 -aryF X ) /\ ( 1st ` z ) e. X /\ ( 2nd ` z ) e. X ) -> ( h ` { <. 0 , ( 1st ` z ) >. , <. 1 , ( 2nd ` z ) >. } ) e. X ) : No typesetting found for |- ( ( h e. ( 2 -aryF X ) /\ ( 1st ` z ) e. X /\ ( 2nd ` z ) e. X ) -> ( h ` { <. 0 , ( 1st ` z ) >. , <. 1 , ( 2nd ` z ) >. } ) e. X ) with typecode |-
8 2 4 6 7 syl3anc Could not format ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( h ` { <. 0 , ( 1st ` z ) >. , <. 1 , ( 2nd ` z ) >. } ) e. X ) : No typesetting found for |- ( ( ( X e. V /\ h e. ( 2 -aryF X ) ) /\ z e. ( X X. X ) ) -> ( h ` { <. 0 , ( 1st ` z ) >. , <. 1 , ( 2nd ` z ) >. } ) e. X ) with typecode |-
9 vex xV
10 vex yV
11 9 10 op1std z=xy1stz=x
12 11 opeq2d z=xy01stz=0x
13 9 10 op2ndd z=xy2ndz=y
14 13 opeq2d z=xy12ndz=1y
15 12 14 preq12d z=xy01stz12ndz=0x1y
16 15 fveq2d z=xyh01stz12ndz=h0x1y
17 16 mpompt zX×Xh01stz12ndz=xX,yXh0x1y
18 17 eqcomi xX,yXh0x1y=zX×Xh01stz12ndz
19 8 18 fmptd Could not format ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) : ( X X. X ) --> X ) : No typesetting found for |- ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) : ( X X. X ) --> X ) with typecode |-
20 sqxpexg XVX×XV
21 elmapg XVX×XVxX,yXh0x1yXX×XxX,yXh0x1y:X×XX
22 20 21 mpdan XVxX,yXh0x1yXX×XxX,yXh0x1y:X×XX
23 22 adantr Could not format ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. ( X ^m ( X X. X ) ) <-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) : ( X X. X ) --> X ) ) : No typesetting found for |- ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. ( X ^m ( X X. X ) ) <-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) : ( X X. X ) --> X ) ) with typecode |-
24 19 23 mpbird Could not format ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. ( X ^m ( X X. X ) ) ) : No typesetting found for |- ( ( X e. V /\ h e. ( 2 -aryF X ) ) -> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) e. ( X ^m ( X X. X ) ) ) with typecode |-
25 24 1 fmptd Could not format ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) with typecode |-